特集 シミュレーションによる予測 —— 5
カオスの壁を越える
天気予報の夢

田 中 博
カオスの壁を越える
天気予報の夢

1. はじめに

大気の運動とは空気という質量をおもに物質の運動であるから、当然運動の法則に従う。つまり、静止している空気には何も力が加わらないければ、その空気は静止し続ける一方、何か力が加われば加速度を生じてその空気は動き始める。「風」は空気の運動であるから、空気加れる外力がすべて既知のときには風の変化が計算できると同時に将来予報も可能となる。この原理に基づいて、大気の将来像を予測しようという試みが数値天気予報である。現在の風の状況を世界中で同時に観測し、これは初期値として大気の運動方程式を解くコンピュータを用いて解くことで将来の風の分布が計算できる。気象学者がこのような気付き、大型研究プロジェクトとして大気標準モデルをと呼ばれる予報技術を開発し始めたのは、1940〜50年代にかけてのことである。このプロジェクトは成功をおさめ、コンピュータの高速化と比例して天気予報の精度は飛躍的に向上し、これが今日における数値天気予報への道を切り開いたのである。業界では、これを単に数値予報と呼んでいく。

かつては天気予報といえば統計的手法を駆使して、経験のある予報官が長年の経験をもとに発表するものであった。例えば、「今日は晴れ、朝曇れは雨」などの経験則は、偏西風により天気が西から東に向かって移動することと関係し、今日では物理的根拠も明らかである。晴れに晴れがなければ晴れようになり、その晴れ空は偏西風に流されて明日にちとやってくるというわけである。ついて記憶の問題は、情報の接続にあり、その晴れ空には100 m/sに及える偏西風が存在するという認識さえ我々にはなかったのである。近代気象学の発展は目覚ましく、今日では、世界的にも予報が最も困難といえる日本近辺さえ、3日先程度までなら十分に正確な天気予報が出せるようになった。このような天気予報技術の革命を導いたのは地球流体力学に基づく大気の運動の理論と、複雑な非線形連立微分方程式を数値的に解くことのできる高速コンピュータの出現であった。

2. 長期予報の夢とカオスの発見

流体力学の基礎方程式として知られるナビエ・ストークスの方程式は、気象学ではブリジット方程式と呼ばれる方程式系にまとめられ、パラダイムが築き上げられてきた。短期予報と呼ばれる数日先までの天気予報技術の目際に見える進歩は、長期予報に携わる研究者達に1世紀先、1か月先、さらには半年先の予報の夢を抱かせた。彼らは、大気システムの理解が深まり、初期の精度で理論的精度に向上すれば、同様の原理で必ず長期予報が可能になると信じていたのである。それは気象学における物理法則主義の最盛期といえよう。

そのような長期予報の夢を打碎したのは、1969年代のエドワード・ローレンツによるカオスの発見であった。彼が気象学者の反対に、彼独自の大気標準モデルを、当時では最も急速なコンピュータを用いて走らせていたローレンツは、ある計算の途中でシステムがダウントするというハプニングに見いだした。仕方なくまた計算を再計算を試みたローレンツは、再計算の結果がそれ以前の独立に行った同一の計算結果を全く異なったことに気が付いた。普通の人なら、パイプもであったのだろうと何気なく見過ごしてしまったかもしれない。この出来事から、ローレンツは、今世界最後の大発見ともいわれるカオス理論を明らかにされたのである。

彼はこのカオスの発見を長期予報におけるパラダイム変革として分かりやすく説明している。つまり、長期予報において同一のモデルによる数値実験を2回行う。ただし、一方の実験には大気の初期条件を乱す1匹のパラダイム（蝶）を入れる。風の分布が蝶の羽ばたきの分だけ、もう
一方の実験と異なるような初期値から予報を始めるのである。すると初期の大気の微小な乱れはより大きな乱れを呼び、やがては地球規模の乱れへと拡大していくため、二つの長期間予報は1か月も経たないと全く異なる将来の大気の予測を下してしまうのである。

このパラダイムが、実はローレンスによる初期条件の再計算の際に含まれていた有効数字以下の入力誤差を意味することは容易に理解できる。もとより時間性の持つもののは軌道オメガも常に変化するものであり、観測点の情報は全てない。あくまでそのものがパラダイム効果程度の誤差を含んでいる。したがって、たとえ大気循環モデルが完璧なものであっても、避けられない初期値の誤差がより大きなスケールの誤差に拡大する、ということは大気の非線形性の特性による。長期予報は再現性に不可能となる。これがカオスの本質である。

方程式の解（つまり将来予測）が決定論的になるにもかかわらずその決定論性を示すないことを述べている。今日では、乱流などの流体力学をはじめ、あらゆる分野でカオスの研究が活発化している。

3. プロックキング高気圧

一般に数値天気予報の予報限界は、このカオス理論により約2週間といわれる。つまり、2週間後の決定論的な天気予報は原則的に不可能であることがあなたも証明された事実であって、研究者の認識として浸透している。ところが、大気中にはグローバルな現象として、2週間から1か月程度のライフタイムをもつプロックキング高気圧という特性が発生している。例えば、梅雨前線が発生する9月から11月にかけての時の高気圧を含むゾーンがプロックキング高気圧である。また、世界中で異常気象が同時に発生する際には、大気中のプロックキング高気圧が関係している。このプロックキング高気圧が再現性に富むブロックサークルであることと同時に、カオスの極端な現象が起きることになるかも知れない。そして、プロックキング現象の解明は、長期予報業務において重要であるとも同時に、多くの理論的研究者により注目されてきた。しかし、いまだその形成のメカニズムは解明されておらず、長期予報も成功していない。

このプロックキングを解明する理論がこれまでもに数多く提唱されている。すでに専門的な記述になっているが、あえて専門的な言葉を用いてその一部をあげると、プロックキングを1大規模山岳や洋面温度差の強制によるプラネタリージョルノスビー波の共鳴として解釈する理論。（2）大気温度差に起因するプラネタリージョルノスビー波の降圧不安定として解釈する理論。（3）定常プラネタリージョルノスビー波によるジェットの蛇行が原因の降圧不安定として解釈する理論。（4）ジェットの喫口に伴って局所的に生じる測圧不安定として解釈する理論。（5）非線形時流流体流の強制に対する解の不変性として解釈する理論。（6）初等気圧が生まされる非線形相互作用による測圧の定常化の結果を生じるとする理論。（7）非線形立体波としてのソリトン、あるいはモードとして解釈する理論、などがある。しかし、これらの理論は一般的なものではなく、必ず理論的には当てはまらない例外的なケースとしてのプロックキングを説明するため、今後にコンセンサスが得られていない。

4. エネルギーの逆カスクードとプロックキング

筆者はこのような背景の下で、プロックキングの数値シミュレーションをいろいろな角度から試みてきた。筆者の考えているプロックキング形成のメカニズムを説明するためには、大気の大気循環のエネルギー流について述べる。

一般に大気のエネルギーは大気エネルギーの流れと大気エネルギーの流れを増幅させる。地球に降り注ぐ太陽放射エネルギーは地球から宇宙へ向かう放射冷却と放射収支の結果、赤道近辺で加熱、両極で冷温となる。この加熱差による地球規模の温度差が大気運動のエネルギー源となる。地球規模の温度差は、逆圧不安定で呼ばれるメカニズムによると、気温が300 kmの高低気圧対称を形成する。このエネルギーはさらに波長1 kmのメソショック波と大気層の逆圧エネルギーへとカスクードを起こし、かつて分子記憶性による熱エネルギーへと還元される。初めの大きな流れがさらに小さな流れに次々と分裂することにより、大気エネルギーの現象のエネルギーが細小される現象をエネルギーのカスクードと呼ぶ。これは流体力学において二次元流の特徴である。

ところが、大気は地球の自転により回転し、鉛直方向に密度成層（流下ほど密度が高い状態）を形成している。この密度成層と回転の効果は、二次元的な流速を二次元的な流速に変為する働きをしている。すなわち二次元流では特徴が、エネルギーは今度は大気エネルギーの現象から大気エネルギーの現象へと逆カスクードを生じる。少し難しいが、エネルギーがAuYoungに凝縮してより大きい組織的な流れに成長していくという、一見不思議な現象が生じるのである。このような二次元流下によるエネルギーの逆カスクードは、実験室でさえ現れ悩む。強い密度成層をした流体をノズルで噴射した流体を観察すると、初めは初期の間散乱流に散らばり、流体流れは密度成層に逆って二次元的な流に散らばる状態になる。ノズルの先には新鮮水のように細かいうつわが無秩序に
入り乱れている。しかし、強い密度差のため乱流の特徴がある直線の集団が密度の混ざる二次元空間に閉じ込められるととき、波動が衝突し、波列して流れを大きく美しい双極性に成長するのである。このようにエネルギーが逆カスクードを生じるときには、乱流から巨大な渦が形成される。いわば、無秩序から秩序が生まれるものである。

同様の現象は木星の大赤斑についてもいえる。大赤斑を説明する理論として、テラスペース、ハリケーン、ソリトンなどが提唱されてきた。しかし最近のボイジャーによる接近研究では、大赤斑の周辺には活発な乱流活動が存在し、決定的にソリトンのような滑らかな構造にはなっていな

い。激しく入り乱れた波列の中心で大赤斑は壊れることなく安定に存在している。むしろ、乱流がもたらす逆カスクードにより大赤斑は維持されていると考えられる。このように、エネルギーの逆カスクードは乱流を組織化して巨大渦にする特性がある。

筆者は、地球大気のプロッキングが、このようなエネルギーの逆カスクードで説明できると考えている。傾圧不安定により発生される低気圧の気流のエネルギーの多くはより小さいスケールの渦へとカスクードしているが、一部は逆カスクードを起こし、より大きい渦へエネルギーを送っている。最も大きな渦として認識できる現象が実はジェット気流で、それは地球を取り囲む波数1の環流である。ジェット気流が低気圧を巻く乱流のエネルギーで維持されていることは以前から知られていた。しかし、これに基づく安定性であると認識するものはこれまでなかったようである。このジェット気流は、チベット高原などの大地形山岳や海洋分布の影響でメアンダーを起こし、波長10,000 km、つまり東西波数1〜3 割の定常プラネタリー波を形成している。高低気圧じょう乱からより大きなスケールへのエネルギーの逆カスクードが、波数1のジェット気流までは行かずに波数1〜3 割のプラネタリー波に閉じ込められたとき、あたかも木星の大赤斑のように、巨大渦が形成され安定に持続される。筆者は、それがプロッキング形成のメカニズムであると考えた。この意味では、プロッキングもエネルギーの逆カスクードによって乱流から生じる逆速度回面に安定渦ができるといえる。

5. プロッキングのシミュレーションと予報実験

筆者は、プロッキングの理解を増加するために、以上のシナリオに沿う数値モデルを開発し、実現のプロッキングをシミュレートしてみた。この予報モデルの特徴は、モデルの力学系に含まれる重力波などの高周波モードや強い力学的不安定を排除し、比較的安定な低周波モードだけでなく力学系を構成されている点である。そして、高低気圧

圧波動の発起とそこからのエネルギーの逆カスクードには細心の工夫が凝らされている。

図1は北半球の上層天気図に相当し、高気圧は低温気压の等温線に沿って地圧気が西から東に向かって吹いている様子を高層度で表している。アラスカ附近の高気圧、その南に低気圧の涡が見られる。この低気圧はプロッキング高気圧である。一度この低気圧バーターンが形成されると、その循環は停滞し、大気圧計が長期間持続し、アラスカや北アメリカに異常気象をもたらすのである。数値シミュレーションとしては、プロッキングの構造や停滞性、持続性といった特徴をほぼ合理に再現している。

図2は、2図例の初期値に限定誤差程度の誤差を上乗せして同様の数値シミュレーションを繰り返した結果である。アラスカ附近にほとんど同じプロッキングが再現され

606

J. IEE Japan, Vol. 117, No. 9
図3 モデル大気における予報誤差の成長

図3では、モデル大気における予報誤差の成長が示されています。誤差は時間の経過とともに増大し、最終的に予報結果と観測結果が大きく乖離するように発展します。特に、図3(a)と図3(b)では、それぞれの時間に対する誤差の成長パターンが異なることが伺えます。

3. まとめ

ここで紹介した実験結果は、予報精度向上のための指針を提供するものであり、特に短時間の予報においては、詳細なモデル解析が必要であることが示唆されます。今後の研究においては、より高度な予報システムの開発が期待されます。