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1. INTRODUCTION

In a framework of a barotropic and baroclinic de-
composition of atmospheric motions, the energy flows
from zonal baroclinic components via eddy baroclinic
components to eddy barotropic components. The eddy
barotropic energy is further transferred to zonal barotropic
components by means of the inverse energy cascade (see
Wiin-Nielsen 1962; Tanaka 1991). The energy supply
into the barotropic atmosphere is dominated by a pro-
cess of baroclinic instability at the zonal wavenumbers
about 5 to 10. Therefore, parameterizing baroclinic in-
stability is essential in constructing a barotropic general
circulation model with energy sources and sinks.

In this study, the parameterization of the baroclinic
nstability by Tanaka (1991) is examined with an ex-
panded barotropic spectral model. The model resolu-
tion now corresponds to R20, but is symmetric about
the equator, containing only the Rossby modes. The
energy levels and energy flows induced by the parame-
terized baroclinic instability are analyzed for this finer
resolution models.

2. DESCRIPTION OF THE BAROTROPIC
MODEL

A 3-D spectral representation of primitive equations
may be written by the following general form after a
suitable diagonalization of the linear terms:

%1;: + tow; = —z‘zk:r,-,-kijk + f,*, 1=1,2,3, .. (1)
j

where w; and f; represent the spectral expansion coef-
ficients of the dependent variables and external forcing,
respectively. The symbol o; denotes the eigenfrequency
of the normal mode in a resting atmosphere, and ik 18
the interaction coefficient for nonlinear wave-wave inter-
actions.

In the 3-D spectral representation, the vertical ex-
pansion basis functions may be divided in barotropic
and baroclinic components. In this study, we attempt
to construct a spectral barotropic model, using only the
barotropic components of w;. The spectral equations
for such a barotropic model has the same form as (1)
except the fact that the barotropic-baroclinic interac-
tions should be included formally in f;. In this study,
we consider the next forcing:

fi=(BC)i +(DF); +(2S); + (VP),, (2)
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where (BC); represents the baroclinic instability, (D F);
the biharmonic diffusion, (ZS5}); the zonal surface stress,
and (V P); the vertical propagation of planetary waves.
The unique energy source of the model is BC, and the
rest of the three physical processes are the energy sinks
in this model. The nonlinear interactions in (1) is des-
ignated as (VN L);. Refer to Tanaka (1991) for the detail
of the model descriptions.

3. PARAMETERIZATION OF BAROCLINIC
INSTABILITY

The parameterization for (BC); is based on an or-
thogonal projection of the barotropic spectral coefficients
w;(t) onto the eigenvector & of the most unstable mode
which is solved linearly for a given baroclinic zonal basic
state.

wi(t) = a(t)éo + €(t), (3)
a(‘) = €€lwi1 (4)
(BC)i = —iva(t), (5)

where the superscript H denotes the complex conju-
gate transpose. The subscript 0 for &, stands for the
barotropic component of £. The projected part is then
amplified toward the unstable direction in the phase
space by the amount of the growth rate (eigenvalue »)
of the projected unstable mode.

This parameterization works accurately for small
amplitude synoptic disturbances in the linear frame-
work. For instance, an infinitesimal white noise of the
initial state is amplified toward the most unstable direc-
tion along with the growth rate of the linear theory. The
exponential growth at this stage is correctly represented
by the orthogonal projection because the spectral coef-
ficients of the model are approximately parallel to the
prescribed eigenvector of the unstable mode. As the
growing mode reaches to a finite amplitude, the nonlin-
earity of the wave-wave interactions begins to deviate
the spectral coefficients from the unstable direction. At
this stage, the parameterized growth is imposed only on
the fraction of the spectral coeficients, which is paral-
lel to the unstable mode. The amplification due to the
baroclinic instability would therefore vanish if the spec-
tral coefficients are completely orthogonal to the eigen-
vector of the unstable mode.

4. RESULTS

The barotropic spectral model (1) is integrated for
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400 days starting from small disturbances superimposed
on a zonal flow. Table 1 lists the mean total energy
E(n), nonlinear interaction N L(n), energy supply due to
the baroclinic instability BC(n), diffusion DF(n), verti-
cal propagation V P(n), and zonal surface stress ZS5(n)
as functions of the zonal wavenumber n.

According to the results, the energy input by the
baroclinic instability ultimately balances with the en-
ergy scattering due to the nonlinear wave-wave interac-
tions, NL(n), toward the short waves and also to zonal
motions. The former is characterized as downscale en-
ergy cascade, whereas the latter is regarded as upscale
energy cascade. The important role of the nonlinear in-
teractions is to transfer the energy from the source to
the sink, which is the characteristic of turbulence.

5. CONCLUDING REMARKS

Present parameterization of the baroclinic instabil-
ity contains no free parameters. Despite this fact, the
mean energy levels are equilibriated at the comparable
level as observed in the barotropic component of the at-
mosphere. The equilibrium is attained in the model by
the balance between the linear excitation of ( BC); and
the nonlinear scattering of (N L); toward the energy sink
of (DF)i +(Z8)i + (VP).

The energy flows in the zonal wavenumber domain
of the present model is summarized in Figure 1. The
energy supply due to the differential heating @ at n=0
is transferred to synptic-scale disturbances induced by
the baroclinic instability. The accumulated energy then
cascades down to smaller scale eddies, whereas a part of
the energy cascades up to the planetary waves and the
zonal flow within the barotropic atmosphere. The en-
ergy flows agree reasonably well with observations (e.g.,
Saltzman 1970). The results suggest that the present
parameterization of the baroclinic instability is useful
for wide applications of the simple barotropic models.

It is interesting to see the clear contrast between
the downscale and upscale cascades: the downscale cas-
cade causes disorder and turbulence while the upscale
cascade creates order and coherence. The jet stream
and blocking system in the atmosphere are clearly main-
tained by such upscale energy cascades as discussed in
Tanaka (1991).
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Figure 1. Schematic energy flow in the zonal wavenum-
ber domain. Q and D represents the differential heating and
energy dissipation.
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Table 1. Gross energy budget in the wavenumber do-
main for 101-400 days mean. Refer to the text for definitions
of energetic terms. Energy is in 102Jm~?, and energy con-
version is in 10~3Wm~2,

n_ E(n) NL(n) BC(n) DF(n) ZS(n)+VP(n)
0 11842 653 0 -14 -630
1 1810 43 21 -41 <24
2 1066 33 26 -36 -15
3 798 25 25 -35 -13
4 810 0 47 -35 -9
5 603 -42 81 -39 -3
6 761 -268 328 -50 0
7 721 -405 482 -38 0
8 319 -125 184 -41 0
9 149 -32 74 -30 0
10 84 7 28 -23 0
11 52 15 10 -18 0
12 40 19 0 -18 0
13 26 17 0 -14 0
14 18 17 0 -13 0
15 13 14 0 -12 0
16 9 12 0 -10 0
17 6 11 0 -9 0
18 5 9 0 -8 0
19 4 9 0 -8 0
20 3 9 0 -7 0




