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ABSTRACT

Normal modes of Laplace’s tidal equations, referred to as Hough harmonics, are complete for
ronal wavenumber m > 0 so that the longitudinal and meridional velocity components and the
geopotential can be represented as a series of Hough harmonics. However, Hough harmonics
corresponding to m =0 are incomplete in that the second kind normal modes have all zero
frequencies. To fill the need for orthonormal basis functions, Kasahara and Shigehisa have
constructed two different sets of the rotational modes of Laplace's tidal equations for m =0,
referred to as the K-modes and the S-modes, respectively. In this study, we compared the
characteristic differences between the K- and S-modes in their energy ratio and structures. The
zonal-mean components of atmospheric data from the FGGE 111b reanalysis are projected onto
the K- and S-modes separalely, in addition to the gravity modes. We showed that the K-mode
representation captures the majority of observed zonal energy with a few terms. whereas
the S-mode representation requires many terms. The K-mode serics converges faster than the
S-mode scrics, especially for small vertical-scale components in the observed zonal fields. The
diflerences between the energy spectra projected upon the K- and S-modes are discussed along
with the consideration of the merits of each set as expansion functions for the zonal atmospheric

motions,

1. Introduction

Small-amplitude motions of a thin. uniform
layer of fluid over a rotating sphere are governed
by Laplace’s tidal equations. Historically, eigen-
solutions of Laplace’s tidal equations have
been used to solve atmospheric tidal problems
(Chapman and Lindzen 1970). In recent years, the
eigensolutions of frec oscillations described by
Laplace’s tidal equations, referred to as the normal
modes, have been applied to the problem of data
initialization (Errico 1989), to the numerical
integrations of the global shallow-water equations
(Kasahara 1977; Salby etal, 1990), and to
the diagnosis of global atmospheric energetics
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(Kasahara and Puri 1981: Tanaka 1985; Tanaka
ct al.,, 1986).

The characteristics of the normal modes of
Laplace’s tidal equations have been discussed, for
example, by Longuet-Higgins (1968). In general,
there are two kinds of solutions. One, called
oscillations of the first kind, consists of the gravity-
incrtia waves which propagate eastwards and
westwards. The other, called oscillations of the
second kind, consists of the westward propagating
rotational waves, often referred to as Rossby-
Haurwitz waves. For nonzonal motions with zonal
wavenumber greater than zero, Hough harmonics
are discrete and orthogonal. However, the case of
zonal wavenumber zero is special in that the
frequencies of gravity medes (first kind) appear as
pairs of positive and negative values of the same
magnitudes, and the frequencies of the rotational
modes (second kind) are all zero. Therefore,
the rotational modes corresponding to zonal
wavenumber i =0 are not unique. It is necessary
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ON THE NORMAL MODES OF LAPLACE’S TIDAL EQUATIONS 19

to have a complete set of the cigenfunctions of
zonal rotational motions in order to expand
atmospheric data in terms of a series of Hough
harmonics.

In the case of m=0, Laplace’s tidal equations
for the rotational motions degenerate to the lincar
balance equation for zonal flows on the sphere.
Since the balance equation is a generalized form of
the geostrophic equation, we shall refer 1o the
Hough harmonics of the rotational modes for
m=0 as geostrophic modes. Kasahara (1978)
constructed a set of meridional functions corre-
sponding to the geostrophic modes by a serics of
Legendre polynomials, and applied the Gram-
Schmidt procedure to obtain an orthonormal set.
These will be referred to as the K-modes. Tribbia
(1979) adopted a similar procedure to construct
geostrophic modes for his study of data initializa-
tion using the equatorial beta-plane shallow-water
model.

For nonzonal wavenumbers, the normal modcs
of linearized equatorial beta-plane shallow-water
system form a complete and orthogonal set
(Matsuno 1966). The cigenfrequencies of the
rotational modes vanish in the case of zonal
wavenumber zero and, therefore, the proof of the
orthogonality of eigenfunctions fails in much the
sume way as the case of Laplace’s tidal equations.
To fulfill the need of orthogonal expansion
functions for the rotational motions. Silva Dias
and Schubert (1979) constructed an orthogonal
sct of geostrophic modes by taking the limit of the
cigenfunctions of the rotational modes as the zonal
wavenumber approaches to zero, and applying
L'Hopital's rule to derive the eigenfunctions.

Shigehisa (1983) obtained the geostrophic
modes of Laplace’s tidal equations as the limit of
rotational modes for m — 0. This is essentially the
same as Silva Dias and Schubert’s approach for
the case of the equatorial beta-plane model
However, unlike the equatorial beta-plane model,
in which the zonal wavenumber is a real number,
the zonal wavenumber m for a spherical domain
becomes an integer. The limit of eigensolutions of
the rotational modes is calculated by considering
m to be a continuous parameter and the ratio
between m and the corresponding eigenfrequency
¢ 10 be finite. The latter condition ensures the
phase speed ¢ = a/m to be continuous with respect
to m. By this approach, Shigehisa obtained
orthogonal geostrophic modes, which are referred
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to as the S-modes. They have similar charac-
teristics with the rotational modes for m>0. In a
software package developed by Swarztrauber and
Kasahara (1985). the S-modes are calculated
instead of the K-modes.

Since two sets of the geostrophic modes have
been proposed, it is meaningful to examine the dif-
ference in the properties of the K- and S-modes.
We are particularly intcrested in the spectral
characteristics of the observed zonal mean
atmospheric states in terms of the two different
sets of the geostrophic modes. The atmospheric
zonal states are projected onto the two sets of
geostrophic modes to complement the normal-
mode energetic studies of Tanaka (1985). Tanaka
and Kung (1988), and Tanaka and Sun (1990).
For that purpose, we used the reanalyzed Level
b datasets from the First GARP (Global
Atmospheric Research Program) Global Experi-
ment (FGGE) for the Special Observing Period |
(SOP-1) provided by the Geophysical Fluid
Dynamics Laboratory (GFDL ). The differences in
the meridional energy spectra are cxamined to
assess the merits of the two sets of geostrophic
modes.

2. Normal modes for zonal wavenumber zero

We describe bricfly the derivation of the
normal modes for wavenumber m =0 following
Swarztrauber and Kasahara (1985). A system of
linearized shallow water equations in spherical
coordinates of longitude 4 and latitude ¢ for a
resting basic state may be reduced to the following
cigenvalue problem:

LH, =isH,,. (1)
where
x
0 —sin#) —
* cos 0 4
1 in 0 0 ¢
= 3| — .
¢
x C x ¢ )cosl
= N 0
cos ) ¢z cos t cf
(2)

and a is the dimensionless cigenfrequency. scaled
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by 2Q. The parameter « =\/;I;/(2.Qa) is a single
dimensionless constant that characterizes the
nature of shallow water flows. The eigensolutions
H, (% 0)of (1) are referred 10 as Hough harmonics
of wavenumber m and are defined by a product of
Hough vector functions (U, —iV, Z)" and ™™
The components U, V, and Z represent the dimen-
sionless longitudinal and meridional velocity,

scaled by \/H and the dimensionless geopoten-
tial, scaled by gh, respectively. Here, the symbols
are the earth’s radius «, the earth’s gravity g, the
angular speed of the earth’s rotation Q, and the
equivalent height /.

In order to determine the Hough vector func-
tions, we assume a series solution for H,(4, 0), in

m i

terms of spherical vector harmonics y},, ¥y », and
s with expansion coefficients A}/, B}, and C}:

H,(2,0)= Z AT+ B, —CR ) (3)

n=0

Refer to Swarztrauber and Kasahara (1985) for
the description of the spherical vector harmonics
which form a complete set of vector functions
defined on the sphere under a suitable inner
product. Substituting (3) into (1) and collecting
the expansion cocfficients of the same spherical
vector harmonics, we can obtain relations to be
satisfied for the expansion coefficients.

We shall discuss only the solutions of the second
kind for m = 0, and the reference to superscripts m
will be eliminated in the following presentation.
The frequencics of the rotational modes are identi-
cally zero for m =0. This results in =0, a strictly
zonal flow, and 4,=0 in (3). The required equa-
tion to be satisfied by the rotational modes is a
geostrophic balance between U and Z. We thus
refer to the modes as geostrophic modes. The
meridional index may be assigned as /3 =0, 1, 2, ...
by the analogy of the nonzonal rotational modes.
After some manipulations, the required geostrophic
relation for the coefficients becomes

rnCn+pan—l+pn+an+l=0v l‘”
where
ro=ay/n(n+1), (5

(n—1)n+1)
= [e— 6
P V(2rn—-1)2n+1) )

Expansion coefficients B, and C, are related to U
and Z ficlds, respectively.

Kasahara (1978) observed that any combina-
tion of U and Z satisfying the geostrophic relation
(4) can be a basis function of the geostrophic
modes. One such a set of U and Z is constructed by
specifying

B"= ], for ”=1R 7
B,=0, for all othern|’ 7
where /=1, 2, 3, ... We then calculate C, from
(4) as
Cn—l= _pn/rn—h
und Cn+l=_pn'l/rn+19
for n=1l, (8)
C,=0, for all other »

Once B, and C, are determined, the Hough har-
monics are evaluated as a series of (3). The mode
corresponding to /p =0 is that both ¥ and V are

- identically zero and Z is a nonzero constant. The

resulling modes are not orthogonal, so they are
orthogonalized using the Gram-Schmidt process.
Hereafter, we refer to these as the K-modes.

Shigehisa (1983) proposed an alternative
derivation of geostrophic modes by assuming that
the following limits exist: a/m — ¢ and A,/m — A,
as m — 0. The quantity ¢ has the analogy of dimen-
sionless phase speed. In this derivation, the rela-
tion to be satisfied for the geostrophic modes can
be reduced for 8, by eliminating A, and C,:

dn—l‘-’n—lén—2+ ["("+ 1)‘*‘95_. +d:.r+l +“_I]

xBu'*'dn+len+lén‘-2=0a (9)
where
dy=—=2D (10)
1\/(2n—l)(2n+ 1)
0= (n+2) , (1)
a/(2n+1)(2n+3)

and we have replaced B, by B, as

B,,=\/n(n+l)§,,. (12)
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The balance condition (4) is also expressed by 8,
as

Cn=_dnén—l_cn§n'l' (13'
Equation (9) can be solved as cigenvalue problems
of two independent tridiagonal systems for 8, with
the cigenvalue ¢! from which the normal modes
arc constructed. One system gives symmetric solu-
tions with odd subscripts n=—1,1,3, ... The
other gives antisymmetric solutions with even sub-

scripts n =2, 4, 6, ... All eigenvalues ¢ ~' are found
to be negative except one for n= —1, which is
positive. Therefore, we designate the lowest sym-
metric mode to be /; = — 1, as done by Shigehisa
(1983). This mode has a property analogous to the
castward propagating Kelvin mode. Hereafter, we
refer to these geostrophic modes as the S-modes.
The proof of the orthogonality of S-modes has
been discussed by Shigehisa and Swarztrauber and
Kasahara (1985).

For each Hough vector function so obtained,
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Fig. }. Normalized kinetic energy of the K-modes as functions of equivalent height /1, . (a) Symmetric modes with odd
meridional indices. /, = 1, 3, 5. ..., and (b) antisymmetric modes with even indices. /g =2, 4.6, ...
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we define the components of kinetic energy and
potential energy by

K, Ul

eni2
K, =%J V?* | cos 0 do. (14)
P T\ z?

We usc the same normalization as in Kasahara
(1976), thus K, + K, + P=0.5, and K, =0 for the
geostrophic modes.

H. L. TANAKA AND A, KASAHARA

Figs. 1 and 2 describe the normalized kinetic
energy lcvels for the K-modes and S-modes,
respectively, as functions of the inverse of
equivalent height /. The solid lines of Fig. 1 for the
K-modes indicate a tendency of increasing kinetic
energy for increasing meridional index /5. The
energy level approaches 0.5 faster for the external
mode at 4= 10* m than the rest of internal modes.
This implies that the variance of U dominates over
that of Z in the modal structures. As 4! increases,
the kinetic energy level decreases and cventually
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Fig. 2. As in Fig. 1, but for the S-modes. (a) Symmetric modes with odd meridional indices, and (b) antisymmetric
modes with even indices. For easier distinction, the first symmetric mode fp = =1 is plotied in (b) with other anti-

symmetric modes.

Tellus 44A (1992), 1



ON THE NORMAL MODES OF LAPLACE’S TIDAL EQUATIONS 23

approaches zero as & — 0. We sce for the internal
mode at 1= 10 m that potential energy dominates
over kinetic energy, i.e., Z dominates U in their
variance. It can be shown from (8) that X tends to
zero and P tends to 0.5 as & — 0. Both symmetric
and antisymmetric modes show similar charac-
teristics. Contrasted with the antisymmetric
modes, the curves of the symmetric modes twist
and touch the adjacent curves in the middle of the
diagram, creating a systematic intersection across
the curves. This odd behavior of the symmetric
modes is resulted from the application of the
Gram-Schmidt procedure for orthogonalization.

The solid lines of Fig. 2 for the S-modes indicate
the tendency of the energy level approaching 0.5
rapidly at fi=10*m as seen in Fig. 1. As &~
increases, the energy level reduces as in the case of
K-modes. However, we sec clear turning points in
Fig. 2 such that the K over P ratios approach to
unity. It is shown by Shigehisa (1983) that both K
and P tend to 0.25 as s — 0. This tendency agrees
with that of nonzonal rotational modes. The
S-modes share common characteristics with the
nonzonal rotational modes, but the K-modes do
not have this featurc. Particularly. the charac-
teristics of S-modes are quite different from
K-modes for small 4.

3. Expansion of atmospheric data in terms of
the normal mede functions

A system of three-dimensional lincarized
primitive equations for a compressible fluid at a
resting basic state can be decomposed in a series of
shallow water cquations having various values of
the equivalent height h,. The quantity &, appears
as the parametric constants relating the horizontal
structure functions H,,,.(7, 0) (horizontal normal
modes) to the vertical structure functions G {c)
(vertical normal modes). Here, H,,,(/ 0) is the

Hough harmonics in Section 2, a = p/p,, is a nor-

malized pressure coordinate, and py, is a boundary
pressure (constant) near the carth’s surface. The
subscript m is the zonal wavenumber and / is a
meridional index representing the modes of the
first and second kinds in a suitable order. Note
that ¢ here is used for the vertical coordinate.
instead of the eigenfrequency. The vertical struc-
ture functions are derived from dynamical equa-
tions describing an atmospheric vertical structure.
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and they form a complete set of orthonormal
expansion basis functions.

We represent the three-dimensional atmo-
spheric variables of longitudinal ¥ and meridional
r wind components and geopotential deviation ¢
from a global mean reference state. as a vector
Wi 0,0)=(u. v, $)7, in terms of the following
series

W, 0.6)=Y winXiHy o ) Gila),

A.tm

(15)

where the scaling matrix X, is defined for each
vertical index 4 :
Xo=/ ghy diag(l, 1, /ghy). (16)
The expansion coeflicients w,,, can be deter-
mined by the use of orthonormality condition of
H:,, and G, (6). Once wy,, arc obtained, the
energy clement £;,, in a dimensional form for a
particular basis function of m =0 is calculated by

)

Eipn=5Pnl |Wisnl for m=0. (17}
In this study, we compare the energy levels for the
K- and S-modes discussed in Section 2 in addition
to the results of gravity modes.

The atmospheric data used are the rcanalyzed
GFDL FGGE [11b data for the SOP-1. The use of
the FGGE data will enable us to compare the
present results with previous encrgetics studies
(e.g., Kung 1988; Tanaka and Kung 1988). The
twice daily (0000 and 1200 UTC) variables of «, ¢,
and ¢ are given at the 12 vertical levels of 1000,

Table 1. Vertical index k and the corresponding
equicalenmt  height hy, (m); the inverse of the
equivalent height ' is also listed for reference

k I (m) htm)
0 96239 10x10 *
1 2297.1 44 %1071
2 4759 20 x10-?
3 3720 37x10
4 1500 6.7x10 "}
5 79.5 13x10°2
6 424 24x10 ?
7 26.3 3I8x 107
8 216 46x10°°
9 134 75x10-2
10 9.4 1.1x10!
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850, 700, 500, 400, 300, 250, 200, 150, 100, 50, and
30 mb. The original data at 1.875" latitudinal grids
are interpolated onto 60 Gaussian latitudes using
cubic spline routines. The vertical structure func-
tions Gy(a) for the 12 vertical levels specified
above are constructed numerically according to a
finite-difference scheme described by Kasahara
and Puri (1981). Table | lists the values of the
cquivalent height A, for vertical index k. The
vertical mode for & = 0 is referred 10 as the external
mode, whereas the rest of the vertical modes as the

internal modes. Although the higher order vertical
modes are sensitive 10 the vertical resolution, it
should not cause a serious problem for the purpose
of comparing K- and S-modes.

Fig. 3 illustrates the vertical energy spectra
(averaged during the SOP-1) of zonal wave-
number zero as functions of 4, ! for k =0-10. The
results exhibit the total energy, ie., the sum of
kinetic energy and available potential energy. for
K- and S-modes and gravity modes. Both the
positive and negative frequency gravity modes are
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Fig. 3. Spectral distributions of atmospheric total energy of zonal wavenumber zero during the FGGE SOP-1 as
functions of equivalent height /1, for k =0-10. Total encrgy (Jm ) is the sum of kinetic energy and available potential
cnergy. Dots denote energy projected onto the K-modes. circles denote for S-modes, and squares denote for gravity
modes as the sum of positive and negative frequency modes.
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used to calculate the gravity mode energy. The
energy spectra are evaluated twice daily and
averaged for the SOP-1. The results clearly show
that the geostrophic mode energy dominates over
the gravity mode energy, confirming that the
geostrophic modes are essential for the expansion
basis functions.

For both the K- and S-mode expansions, the
energy maximum (about 23 x 10° Jm~?) is seen
at i, =150 m. Since the total energy for m=0
is about 60x 10*Jm~°, close to one half of
the energy is found near the peak at &, =150 m.
The external mode at h,=9624 m contains
8.4 x10° Jm > Another energy peak is scen at
hy=22m. There are cnergy minima between
h, =9624 and 150 m and between 150 and 22 m
The gravity mode energy is two orders of
magnitude less than the geostrophic mode energy.
Their energy peaks appear at the same 2, as seen
in the geostrophic modes. Since both meridional
velocity ¢ and vertical motion e ( =dp/dr) vanish
in the geostrophic modes, the meridional structure
of the Hadley cell is described only by the gravity
modes. Therefore, although the energy levels are
low, the gravity modes arc important in describing
the zonal mean circulations.

The energy spectra for K- and S-modes agrec
well for large /&, . This suggests that the number of
functions used in the K- and S-mode cxpansions is
sufficient to represent the atmospheric data for
large i1, . However, the S-mode expansion contains
less energy than the K-mode expansion in small
h,. Physically speaking, the two expansion
methods should yield the identical amounts of
energy in cach vertical mode if the number of
expansion terms were infinite. Thus. the dis-
crepancy in the amounts of cnergy in the S- and
K-mode expansions occurs due to the difference in
the ability of the expansion methods to represent
the total enrgy with a finite number of expansion
terms. In the following presentation, we will
explain this discrepancy by examining the cnergy
spectra of K- and S-modes for each vertical mode
in the meridional index domain.

The energy spectra in the meridional index
domain for the zonal wavenumber zero are
illustrated in Fig. 4 for the exiernal mode and in
Fig. 5 for the internal modes. Dots denote for the
K-modes, circles for S-modes, and squares for
gravity modes. The four panels in Fig. 5 are for
h, =475, 150,42 and 22 m, respectively. As seen in
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Fig. 3. the total zonal energy is dominated by the
geostrophic mode energy. Note that the /, =0 of
K-modes is unique in that both U and V arc identi-
cally zero and Z is a nonzero constant (sce Fig. 6).
Since our geopotential field is defined as the devia-
tion from the global mean reference state, the total
energy for /, =0 is identically zero; we therefore
omitted the /y = 0 mode. As explained in Scction 2,
the /y = — 1 mode is special in the S-modes, and
lx =0 is not present. For convenience. we plotted
the projected energy level of /y = — 1 in place of
lg=0inFigs. 4 and 5.

For the external mode (k=0) in Fig. 4, thesc
two meridional spectra of K- and S-modes are very
close to ecach other, especially in large /.
Nevertheless, there are minor differences in small
/. The K-mode energy spectrum shows the maxi-
mum at /=1, whereas the S-modc spectrum
shows the maximum at /p =3. The gravity mode
spectrum shows the energy maximum a1/ = 1.

For the internal modes (A >0) in Fig. 5, the
energy spectra of K- and S-modes show marked
differences with respect to meridional indices. For
example, as seen from Fig. 5a for the second inter-
nal mode, the energy levels of K-modes decrease
almost monotonically as /g increases starting from
the maximum at /, =1, while the values of
S-modes do not decrease markedly until 7, reaches
10. This means that several meridional S-modecs
are necessary to capture the majority of cnergy,
while only the first two K-modes are sufficient. The
tendency for the data projection onto the S-modes
to requirc many meridional functions becomes
more evident for higher internal modes. In the case
of k=4 (I,=150m) on Fig.5b, the /, =1
K-mode represents about 90 % of the toual energy.
In contrast, energy values of S-modes increase
markedly for / > 7 following an initial decrcase in
energy levels. The symmetric S-modes show higher
cnergy levels than the antisymmetric S-modes
for lx>7. and they appear alternately. The
alternating appearance of rather large S-modes
energy shifts toward a higher meridional index
for higher internal modes (compare Figs. 5b
through 5d.)

The different spectral distributions for the
K- and S-modes are caused by notable differences
in the energy characteristics of ' and 7 between
the two sets of geostrophic modes as discussed in
Section 2. In order 10 aid visually understanding
the differences in the expansion funclions, we
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illustrate in Fig.6 the meridional structures
of U/ and Z of symmetric K- and S-modes for
Iy = 150 m as an example of higher internal modes.
Note that the differences in their structures
between the K- and S-modes are substantial. The
structures of the K-modes show large amplitudes
of Z compared with those of L' and have a global
extent with large amplitudes in higher latitudes.
We saw in Fig. 5b that the symmetric /; =1

K-mode represents the majority of the total energy
of the k=4 internal mode. This result may be
explained by the fact that the structure of Z is
suitable for representing the basic meridional
geopotential distribution of the atmosphere,
having warmer tropics and colder polar regions. In
contrast, the structures of S-modes show com-
parable magnitudes of Z and U and have large
amplitudes in low latitudes for low meridional
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Fig. 4. Spectral distributions of atmospheric total encrgy of zonal wavenumber zero as functions of the meridional
index / for the external mode (X = 0). Units are Jm ~°. Nots denote for the K-modes, circles for S-modes, and squares
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indices. These features resemble
nonzero wavenumbers. Therefore, in order to
represent higher latitude structures in terms of the
S-modes il is necessary to use many terms of higher
meridional indices.

Observed atmospheric zonal flows hold a large
amount of available potential energy compared
with kinetic energy and are ncarly in geostrophic
balance. Available potential energy is concentrated
in a zonal internal component near i, =150 m,
whereas the majority of kinetic energy is found in
the zonal external component. Available potential
energy dominates kinctic energy in the observed
internal components (scec Tanaka and Kung 1988).
The K-modes have a property of large potential
energy and small kinetic energy for small A, in
addition to their globally extended structures. This
property is effective in describing the distribution
of atmospheric energy. The S-modes. in contrast,
are suitable to represent evenly partitioned kinetic
and potential energies for small ;. We find that
this partitioning is not observed in the atmosphere.
The atmospheric zonal ficlds are fundamentally
forced by differential heating. The S-modes, that
have the property of frec modes, are not effective to
describe predominantly forced motions. Therefore,
the K-mode serics converge faster than the
S-mode’s to represent observed zonal fields. The
discrepancy in energy levels between the K- and
S-modes shown in Fig. 3 can be cxplained by the
different rates of convergence with the K- and
S-modes.

We pointed out that the S-modes share the
properties of the rotational modes for nonzero
zonal wavenumbers. This is not the case of the
K-modes. The question of three-dimensional
scaling at atmospheric energetics and the energy
spectra associated with that scaling have been
discussed, for example, by Baer (1981) and Tanaka
(1985). As presented in Tanaka and Sun {1990),
the normal mode energy spectra of nonzonal
motions plotted against cigenfrequencies exhibit
two distinct regimes with the 3 and — § power laws.
Although the eigenfrequency of geostrophic modes
vanishes, the S-modes have finite values of ¢ as the
limit of 6/m when both ¢ and m approach zero.
Therefore, the phase velocity ¢ can be used as an
intrinsic index, in place of the meridional scale
index /5. against which the energy spectra of
S-modes are plotted. In fact, Tanaka (1985)
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those of .
equatorially trapped internal normal modes of -

presented the energy spectra of rotational modes
plotted against the phase speed |c| =|a|/m for
m >0 and showed that the slope of the cxternal-
rotational mode energy spectra in the range of
le] < 1.5x% 10 ? (this dimensionless phase speed
corresponds  to  approximately 14m/s at the
cquator) follows approximately the 3-power of |¢].
Morcover, the normal-mode energy distributions
are dependent only on ¢ and approximately inde-
pendent of m. This finding may have a bearing
on an interpretation of atmospheric large-scale
disturbances from the standpoint of geophysical
turbulence that results in stationary-transient
interactions as energy transfer between different
meridional scales (see Shepherd 1987).

Since the K- and S-mode expansions basically
produce similar energy spectra for the external-
mode motions when plotted against /, (Fig. 4). it
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Fig. 7. Spectral distributions of atmospheric total energy
of external rotational modes as functions of the dimen-
sionless phase speed |c[. Units are Jm ~*. Circles denote
for S-modes of zonal wavenumber m =0, dots are for
rotational modes of m =1 — 3. and crosses are for those
ofm=4-6.
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is of interest to examine the dependence of the
external-mode energy spectra on the phase speed.
Fig. 7 illustrates the external-mode energy spectra
for the S-modes, indicated by open circles, as a
function of |c]. In addition, we plotted the energy
spectra of the rotational disturbances for m=1 to
6 by using solid dots (m=1 to 3) and crosses
(m=4 to 6). We see clearly a 3-power range
extending over |¢| < 1.5 x 1072, In this range, we
see that the S-mode energy values fall right on
other energy values for m > 0. The energy levels of
S-modes increase for |¢|> 1.5x 1072, whereas
those of the nonzonal rotational modes decrease
toward the —3 power regime (Tanaka and Sun
1990). The present result implies that the S-mode
expansion is suitable to investigate the zonal
atmospheric motions from the standpoint of
turbulence in a similar fashion to the nonzonal
atmospheric disturbances.

4. Concluding remarks

Spherical harmonics have been used extensively
to represent geophysical data on the sphere. For
the representation of atmospheric variables, such
as the horizontal velocity components and the
geopotential, an alternative is to use the normal
modes of the three-dimensional primitive equa-
tions, referred to here as Hough harmonics.
Advantages in the use of Hough harmonic expan-
sion over that of spherical harmenics are that
both the horizontal wind components and the
geopotential are represented simultaneously with
respect to a same scaling index and that it permits
the identification of atmospheric motion in terms
of rotational and gravity modes which has been
successfully implemented in the praclice of
nonlinear normal mode initialization (e.g.
Machenhauer 1977; Baer and Tribbia 1977). Thus,
it is of interest to investigate the structure of
zonal-mean atmospheric motions from the same
consideration of Hough harmonic expansion for
nonzonal atmospheric motions. While there is no
difficulty in identifying the presence of gravity
modes in zonal mean atmospheric motions, the
representation of geostrophic modes has created a
special problem because of the lack of appropriate
expansion functions due to the fact that the eigen-
frequency of geostrophic modes vanishes. To fill
this need, Kasahara (1978) and Shigehisa (1983)

have constructed two different sets of orthogonal
eigenfunctions for the geostrophic modes. In this
study, the spectral characteristics of these two
different sets of geostrophic modes, which are
referred 10 as K- and S-modes, are compared by
projecting atmospheric data onto these modes.
The GFDL reanalyzed FGGE IIIb data are used
for this purpose. The results are summarized as
follows:

Both the K- and S-modes indicate similar
meridional structures of U and Z components for
a large equivalent height such as 4, =9624 m as
pointed out by Shigehisa (1983). However, the
structures of these geostrophic modes are substan-
tially different for a smaller equivalent height. Even
for a small equivalent height, the K-modes have
globally extended structures, whereas the S-modes
have equatorially trapped structures. The nor-
malized kinetic energy, X (=K,), and potential
energy, P, of these geostrophic modes are com-
pared for a wide range of the equivalent height. We
found that K—0 and P —0.5 as /1, -0 for the
K-modes. In contrast, both X and P—0.25 as
h, — 0 for the §-modes.

A large portion of the aimospheric energy is
stored in the zonal energy. The available potential
energy dominates over the kinetic energy, and the
corresponding wind and mass fields are essentially
in geostrophic balance. These observations match
with the characteristics of the K-modes together
with the features in the energy ratio and globally
extended structures. We found that the K-mode
representation captures the majority of observed
energy with a few meridional components, whereas
the S-mode expansion requires many meridional
components to express observed zonal fields
satisfactorily. The S-modes exhibit some basic
characteristics of free modes that are shared with
the nonzonal rotational modes. The presence of
observed large zonal energy associated with
moderately small vertical scales in the atmosphere
is resulted from forced motions duc to differential
heating. Therefore, the S-modes with the charac-
teristics of free rotational motions and cquatorially
trapped structures for a small equivalent height are
inefficient for the purpose of data expansion. The
results show that the use of K-modes is superior
to the S-modes in the data representation of
zonal atmospheric fields duc to a faster series
convergence especially for internal modes. Errico
(1987) adopts the K-modes for representation of
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the zonal fields for normal mode initialization with
the NCAR community climate model.

The eigenvalues of ¢~' associated with the
S-modes may be regarded as an intrinsic index
representing a kind of meridional scale of the zonal
field. The observed meridional energy spectra are
investigated and presented as a function of the
phase speed ¢ of the S-modes. We found that the
major part of energy spectrum of the external com-
ponent follows the 3 power of |¢|. In the range of
le] < 1.5% 1072, corresponding to 14ms at the
equator, it turns out that the energy spectrum of
the S-modes coincides with the energy spectra of
the rotational modes for nonzonal disturbances in
the external component. Moreover, the energy
levels all depend only on |¢] and are approximately
independent of the zonal wavenumber. The
appearance of such a power law seems to indicate
that the external zonal motions hold some charac-
teristics of atmospheric turbulence, at least in part,
generated by differential heating. This result
suggests that the use of the S-mode expansion may
have a potential of exploring the external zonal
motions upon a different standpoint from the use
of the K-mode cxpansion. Contrasted with this
marked feature of the external energy spectrum, we
find no clear trend in the dependency of energy
spectra on |c| for the internal components. The
decision as to which geostrophic modes be used for
data analysis must depend upon the nature of the
investigation. For application 1o normal mode
initialization, it is clear that the use of K-modes is
advantageous, due to the faster rate of serics
convergence. In contrast, il the investigator is
interested in the study of spectral characteristics of
zonal motions in relation to those of nonzonal
motions, then the use of the S-modes may be
preferred.

Finally, a comment should be made concerning
the effect of orography in the scale representation

of atmospheric motions. In the present discussion,
we formulated the normal modes and expanded
with them atmospheric data on pressure surfaces,
ignoring the presence of orography. Actually, the
construction of normal modes and the spectral
analysis can be performed based on the
atmospheric system written in Phillips’ sigma
coordinate, as done by Kasahara and Puri (1981).
Thus, effect of orography can be implicitly treated.
though the definition of geopotential must be
modified by an additional term representing an
orographic effect. In their work. the influence of
this additional term has been investigated upon
the spectral analysis of atmospheric motions. They
found that the observed spectral distributions in
the pressure and sigma coordinates are very
similar. Therefore, the use of pressure or sigma
coordinates in the spectral analysis, as far as large-
scale motions are concerned, will not affect our
interpretation on the scale dcpendency of
atmospheric motions in the framework of normal
mode expansions. This should not be interpreted
that there is no orographic effect in the
atmospheric energetics. Orographic effects are
reflected in the observed data and, in fact, there is
no way 1o isolate them from the real data.
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