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1. INTRODUCTION

The atmospheric energetics has been inves-
tigated since the atmospheric energy flow was
discussed by Lorenz (1955) using the concept
of the available potential energy. Lorenz (1955)
studied the energetics of the atmospheric gen-
eral circulation with dividing the atmospheric
data into zonal and eddy components. Saltz-
man (1957) expanded the energy equations into
the zonal wavenumber domain and showed that
the kinetic energy of the cyclone-scale waves is
transformed into both the planetary waves and
the short waves in term of nonlinear wave-wave
interactions. Since Kasahara and Puri (1981)
obtained orthonormal eigensolutions to the ver-
tical structure equation, it became possible to
expand the atmospheric data into the three-
dimensional harmonics of the eigensolutions.

Tanaka and Kung (1988) studied the at-
mospheric energy spectrum and interactions ex-
panding the atmospheric data to the three-
dimensional normal mode functions. The ver-
tical structure functions used by them were ob-
tained by solving the vertical structure equation
with a finite difference method. The numeri-
cal vertical structure functions have quite large
aliasing for higher order vertical modes indicat-
ing largest amplitudes near the sea level despite
that the analytical solutions indicate the largest
amplitudes always in the upper atmospehre (see
Sasaki and Chang 1985).

The barotropic-baroclinic interactions
have been studied by many researchers (Wiin-
Nielsen 1962; Smagorinsky 1963). Wiin-Nielsen
(1962) investigated the kinetic energy interac-
tions between the vertical shear flow and the
vertical mean flow. According to their analysis,
the energy conversion between shear flow and

mean flow is about 30 percent of the conversion
between the available potential energy and the
shear flow kinetic energy.

Terasaki and Tanaka (2007) studied the
three-dimensional atmospheric energetics using
the analytical vertical structure functions. In
their study, it was found that the energy spec-
trum indicates a clear peak in the middle verti-
cal modes, and the spectrum decreases mono-
tonically at the higher order vertical modes.
The energy interactions for lower order verti-
cal modes are consistent with that by Tanaka
and Kung (1988). However, it is found from the
analysis of the energy interactions that there is
another energy source region in the higher order
vertical modes in the zonal field.

2. GOVERNING EQUATION AND
DATA

2.1 Primitive Equation

The governing equations used in this study
are the primitive equations, consisting of equa-
tion of motions, thermodynamic equation, hy-
drostatic equation, equation of state, and law
of mass conservation. A system of primitive
equations is defined on a spherical coordinate of
longitude λ, latitude θ, nondimensional pressure
σ = p/ps (ps = 1000 hPa), and time t. Where
ps is constant surface pressure.

2.2 Vertical Structure Functions

The basis function for the vertical direc-
tion is derived by solving the vertical structure
equation as follows (Terasaki and Tanaka 2007):

G0(σ) = C10σ
b10 + C20σ

b20 , (1)

Gm(σ) = σ− 1
2 {C1m cos(µm lnσ)

+ C2m sin(µm lnσ)}, (2)



b1m = − 1
2

+ µm, b2m = − 1
2
− µm,

µm =

√
| 1

4
− λm |, (3)

where the eigenvalues λm are obtained by solv-
ing the eigenvalue problem of vertical structure
equation. C1m and C2m are obtained from the
boundary conditions at the surface and the top
of the atmosphere, and normalized as C2

1m +
C2

2m = 1. The vertical structure functions have
a orthogonality, so the orthonornal basis func-
tions can be obtained by dividing with the norm
of the vertical structure functions.

Figure 1 shows the vertical profiles of the
analytical vertical structure functions for verti-
cal modes m = 0 to 5. The envelope function of
σ−1/2 is superimposed in the figure. The ana-
lytical vertical structure functions for baroclinic
modes are represented by trigonometric func-
tions multiplied by the envelope function, so the
profiles have larger amplitudes at the upper at-
mosphere. The subscript m of the vertical struc-
ture functions represents only the vertical mode
number and doesn’t indicate vertical scale. But
by using µm in (2), we can express a nondimen-
sional vertical wavenumber in the same manner
as the Fourier expansion. We use both vertical
indices in this study.
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Figure 1: The vertical profiles of the analytical
vertical structure functions for m = 0 − 5.

2.3 Global Energy Budget Equations

In order to obtain the energy budget equa-
tions, we summarize the kinetic energy and
available potential energy equations as:

∂Km
∂t = −M(m) + L(m) + C(m) − D(m), (4)

∂K0
∂t =

∑M
m=1 M(m) + C(0) − D(0), (5)

∂Pm
∂t = R(m) + S(m) − C(m) + G(m), (6)

∂P0
∂t = −

∑M
m=1 R(m) − C(0) + G(0). (7)

Eqs. (4) - (7) are the energy bud-
get equations for the baroclinic kinetic energy,
barotropic kinetic energy, baroclinic available
potential energy, and barotropic available po-
tential energy, respectively. The atmospheric
energy flows in the vertical spectral domain can
be examined by calculating these terms.

The data used in this study are four-
times daily (00, 06, 12, and 18 UTC) JRA-25
(Japanese Re-Analysis 25 years) (Onogi et al.
2007) and JCDAS (JMA Climate Data Assim-
ilation System) from 1979 to 2007. The data
contain meteorological variables of horizontal
wind u, v, vertical p-velocity, temperature, and
geopotential φ, defined at every 2.5◦ longitude
by 2.5◦ latitude grid points over 23 mandatory
vertical levels from 1000 to 0.4 hPa. The data
are interpolated on the 46 Gaussian vertical lev-
els in the log (p/ps) coordinate by the cubic
spline method.

3. RESULTS

Figure 2 illustrates kinetic energy and
available potential energy cycle between the
barotropic and baroclinic components for the
Northern Hemisphere, evaluated for 27 years
using the JRA-25 and JCDAS. The energeric
terms of the baroclinic modes are derived by
summing up each term of all baroclinic modes.
The baroclinic-baroclinic interactions of kinetic
and available potential energies vanishes when
they are summed up in all baroclinic modes. A
large amount of available potential energy is in-
cluded in the baroclinic mode. The energy of
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Figure 2: The kinetic and available potential
energy cycle for the barotropic and baroclinic
components of the Northern Hemispheric atmo-
sphere. The units of the energy are 105J/m2,
and those of the interactions term are W/m2.

the atmospheric general circulation is injected
as the baroclinic available potential energy by
the solar heating. The amount of the energy
injection is 2.28 W/m2. The baroclinic conver-
sion, which is the energy conversion from avail-
able potential energy to kinetic energy by the
baroclinic instability, is 2.01 W/m2. A part of
this baroclinic kinetic energy is dissipated by the
viscosity or friction, and the amount of the dis-
sipation is 1.10 W/m2. The residual baroclinic
kinetic energy is transformed to the barotropic
motion. Finally, the barotropic kinetic energy is
dissipated by the viscosity or friction.

Figure 3 shows the kinetic energy and
available potential energy flows in the vertical
wavenumber domain. The similar analysis in
the zonal wavenumeber domain, in which the
Fourier expansion is used for basis functions, is
performed by Saltzman (1957). It is found in
this study that the generation of the baroclinic
available potential energy is widely distributed
to the higher order vertical modes, while the
maximum injection is seen at the lower order
vertical modes around m = 4. The barotropic
available potential energy actually should be
zero, if the barotropic mode strictly means ver-
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Figure 3: The energy flow diagram of the at-
mospheric general circulation in the vertical
spectral domain. The units of the energy are
103J/m2, and those of the interactions term are
10−2W/m2.

tical mean. But the vertical structure function
of vertical mode m = 0 doesn’t have a con-
stant value, so the available potential energy of
the barotropic mode has a nonzero value. It is
found that the interactions of the available po-
tential energy between baroclinic-baroclinic and
barotropic-baroclinic are very small compared
to that of the kinetic energy. The baroclinic
available potential energy is directly converted
to the same scale of the kinetic energy without
interacting among them. Most of the baroclinic
conversions have positive values except for the
barotropic mode (m = 0) and one of the baro-
clinic modes (m = 1). It is found that the baro-
clinic kinetic energy interacts within baroclinic
modes, and then they are transformed to the
barotropic mode. The energy interactions in
higher order vertical modes have a zigzag dis-
tribution. This is caused by the comutational
error that the vertical structure function in the
upper atmosphere has a large amplitude.

4. CONCLUSION



In this study, a new method for the spec-
tral analysis of the atmospheric general circula-
tion in the vertical wavenumber domain is in-
troduced, using the analytical vertical structure
functions as a basis function for the vertical di-
rection. The analytical vertical structure func-
tions can be obtained by assuming the static
stability parameter γ to be a constant value.
The vertical expansion is applied to a system
of the primitive equations in consideration of
the proper boundary conditions, and the kinetic
energy and available potential energy equations
are derived. Using this analysis method, we can
examine the interactions of kinetic and available
potential energies within baroclinic modes.

According to the result of the analysis in
dividing the atmospheric data into vertical mean
(barotropic) and its shear (baroclinic), we ob-
tain the energy cycle of the atmospheric general
circulation. This result is consistent with previ-
ous studies.

According to the result of the analysis in
the vertical wavenumber domain, it is found that
the baroclinic kinetic energy interacts within
baroclinic modes, and then they are transformed
to the barotropic mode. The interactions for
available potential energy are very small com-
pared to that for the kinetic energy. Further
analysis must be desired about the energy inter-
actions within the baroclinic components, and
its spatial distribution to analyze the various at-
mospheric phenomena.
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