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1. INTRODUCTION

There are two major approaches—finite difference
and spectral—to solve numerically atmospheric prediction
equations. Historically, the finite difference approach has
been most prevalent in discretizing model variables. In re-
cent years, however, the spectral method has been gaining
popularity in discretizing model variables in the horizon-
tal direction. In fact, most operational global forecasting
models now adopt spherical harmonic expansions to rep-
resent the model variables in the horizontal. As far as
the discretization of model variables in the horizontal, we
now have the freedom of choice in selecting either the fi-
nite difference method or the spectral method.

For discretization of model variables in the verti-
cal, our choice is very much limited to the finite difference
method. The reason seems to be not because no attempt
has been made in the spectral approach, but because very
few references are availablein the meteorological literature
which demonstrate that the spectral method is a viable al-
ternative to the finite difference method in discretizating
model variables in the vertical.

There is one exception to this observation. A
variant of the spectral method, called the finite element
method (FEM) has been successfully applied. In the
FEM, grid-point values are represented by the basis func-
tions which are piecewise polynomials spanned only local
grid points centered around the grid point in question.
Even though the Galerkin approximation is used to de-
rive discretized prediction equations, their appearance is
very much like that of finite difference equations. There-
fore, the FEM can be considered a variant of the finite
difference method.

Following the first formulation by Staniforth and
Daley (1977), a finite element vertical discretization
scheme has been adopted for baroclinic primitive equa-
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tions (Staniforth and Daley, 1979). See also Staniforth
(1984) for a review. The accuracy of the finite element
vertical discretization for a modified version of Staniforth
and Daley (1977) is investigated by Béland et al. (1983).
Also, the related question of the computational stability
of the FEM in such a model is examined by Cété et al.
(1983). These studies noted some difficulties, namely the
presence of relatively large phase errors for the gravity
wave modes and the appearance of two-grid length verti-
cal computational modes. These shortcomings are said to
be eliminated by Béland and Beaudoin (1985) in a revised
formulation of the governing equations, particularly in the
treatment of the hydrostatic equation. Staniforth (1985)
also reviews other recent developments in the application
of finite element vertical discretization to prediction mod-
els.

Except for the application of FEM, attempts to
discretize model variables in the vertical, using more tradi-
tional spectral techniques, are very limited. Francis (1972)
proposed application of Laguerre polynomials in tn(p/ps),
where p is the pressure and p, the surface pressure. He
presented one example in which this application requires
a very small time step to ensure a linear computational
stability if the explicit time differencing scheme is used.
The source of this difficulty is analyzed by Hoskins (1973).
Also, Machenhauer and Daley (1972) used Legendre poly-
nomials for spectral representation in a p/ps coordinate.
In this application, they reported a difficulty in obtaining
the geopotential values through integration of the hydro-
static equation unless an extra constraint is imposed on
the temperature field.

In the application of spectral techniques, the
choice of the basis functions is wide open. Bodin (1974)
used the empirical orthogonal function (EOF) representa-
tion in the vertical to formulate a quasi-geostrophic pre-
diction model. The EOFs are derived by minimizing the
root-mean square difference between the data and the
functional representation (Obukhov, 1960; Holmstrém,
1963). The physics of the atmosphere is reflected sta-




tistically in the characteristics of the EOFs. Another
choice of the basis functions is the eigensolutions of the
vertical structure equation, referred to as the normal
modes, which appears in the formulation of nonlinear nor-
mal mode initialization (Kasahara, 1982). Gavrilin (1965)
formulated a quasi-geostrophic prediction model, in which
the vertical discretization uses orthogonal normal mode
functions derived from the vertical structure equation for
an atmosphere at rest. Simons (1968) describes the for-
mulation of a quasi-geostrophic model along a similar
approach, but the horizontal discretization uses spheri-
cal harmonic expansions so that the model is spectral in
three-dimensions. To the authors’ knowledge, however,
his model has never been fully tested.

Kasahara and Puri (1981) represented atmo-
spheric data spectrally in three parameters (zonal
wavenumber, meridional and vertical modal indices) using
three-dimensional normal mode functions (3-D NMFs).
The 3-D NMF's are constructed from the eigensolutions of
a global primitive equation model and they are orthogonal
functions. Kasahara (1984a) presented the formulation of
a global spectral model based on the Galerkin approxima-
tion with 3-D NMF's as the basis functions. A linearized
version of the model formulation is used to investigate
the time dependent response of model normal modes to
tropical thermal forcing in the atmosphere at rest (Kasa-
hara, 1984b). As a step toward formulation of a nonlinear
spectral model using 3-D NMFs, Kasahara and Silva Dias
(1986) extended the work of Kasahara (1984b) by consid-
ering the effects of a mean zonal flow with meridional and
vertical shear. In this model configuration, it is possi-
ble to encounter the situation in which barotropic and/or
baroclinic instability occurs. In order to avoid the occur-
rence of this situation, Kasahara and Silva Dias (1986)
investigated only the steady response of planetary waves
to stationary tropical heating.

Before treating the problem of baroclinic insta-
bility over a sphere with 3-D NMF expansions, we
shall discuss the feasibility of solving the traditional
Charney(1947)-Green (1960) baroclinic instability prob-
lem with vertical normal mode expansions. It turns out
that the vertical structure equation which appears in the
quasi-geostrophic model is identical to that in the primi-
tive equation formulation. Therefore, it is instructive to
demonstrate the applicability of vertical normal mode ex-
pansion to the quasi-geostrophic model. We are not aware
of any earlier publication dealing with the problem of
baroclinic instability by using vertical normal mode ex-
pansions, though spectral techniques have been used by
previous authors. For example, Simons (1969) adopted
harmonic functions in the vertical and Boyd (1987) used
rational Chebyshev functions defined on a semi-infinite
interval for solving baroclinic instability problems.

In Section 2, we present the results of a baroclinic
instability problem which is solved by using vertical nor-

mal mode expansions. Section 3 summarizes the present
work.

2 BAROCLINIC INSTABILITY PROBLEM

21 Basic equations

We choose a vertical coordinate o(= p/p., where
p denotes the pressure and p, the surface pressure, which
is treated as a constant) and a horizontal coordinate Z,
directed eastward. Time is denoted by 7. We consider
perturbation motions superimposed on a mean basic zonal
flow (o) which are independent of a meridional coordi-
nate.

The well-known equations of quasi-geostrophic
flow on a beta-plane are combined into the follovﬁng po-
tential vorticity equation for dependent variable ¥ in the
dimensionless form (Kuo, 1973)

2 0 9%y a
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which is to be solved subject to the upper and lower
boundary conditions in the dimensionless form

o

3 0 at o =or, (2a)

9 _a\av oy _dU Y _

In deriving the system of dimensionless equations
(1) and (2), we use the following notation:

L. = Representative horizontal scale
H. = Representative vertical scale in
geometrical height
f 0o = 2Q1sin ()50
ﬂo = 2Qcos ¢o / a
o = Latitude of the beta-plane origin,

which is chosen here at 45°N
Earth’s gravity
Earth’s angular speed
Earth’s radius
201 (scaled time)
z/ L. (scaled z-coordinate)

¢/ H. (scaled dependent variable)
/(2QL.)

LtﬂO/ 2ﬂ)

(foL.)?/(gH.) (Lamb’s parameter)
gH./R

Specific gas constant of dry air
To/T. (dimensionless static stability)
xTo/o — dTp/do (static stability)
Basic state temperature as a function of o
R/Cp(=2/7)

Specific heat at constant pressure
Io/To evaluated at o = 1.
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The boundary conditions (2) are derived from the
statemnents that the perturbation temperature vanishes at
the top, o7, and the vertical motion di/dt vanishes at the
bottom, ¢ = 1.



22 Vertical normal modes

Solutions to (1) under boundary conditions (2)
when the zonal mean flow is absent (i.e., U = 0) represent
the normal modes of the system. In this case, (1) is sepa-
rable in terms of two equations: one is referred to as the
horizontal structure equation and the other as the vertical
structure equation which is written in the form

iodG
do | S do

]+AG 0, (3)

where ) is the separation constant and G(o) denotes the
vertical structure function. The boundary conditions (2)
are now reduced to

%g =0 ato=orp, (4a)
%gi-rc 0 at o =1. (48)

The differential equation (3) together with the
boundary conditions (4) forms a Sturm-Liouville prob-
lem which possesses a nontrivial solution only if the pa-
rameter A is assigned one of a set of permissible values
(Hildebrand, 1958). For such a value of ), say A = An,
the conditions of the problem are satisfied by an expres-
sion of the form G = C G,(o) where C is a constant.
The permissible values of A are known as its eigenvalues
and the corresponding functions G, (o) as the eigenfunc-
tions or structure functions. Also, we find that two eigen-
functions, G; and Gj, are orthogonal. In terms of a new
independent variable

Z=—-tno, (5)

the orthogonality condition, combined by a proper nor-
malization, is expressed by

Zy
/ G;Gje~2d7 = &, (6)
0

where Z7 = —-tn op.
For the basic state temperature profile Ty(0), we
choose

To(0) = (Ts — Too) exp (rlno) + Too, (7)

where T, = T5(1). This temperature distribution is used
by Pekeris (1937) and Gavrilin (1965). Fig. 1 shows the
temperature profile To as a function of Z(= —fno) by
choosing that T, = 302.53 K and T,, = 83.265 K based
on Fulton and Schubert (1980). We see that Ty is repre-
sentative of mean tropospheric temperature distribution.

For the temperature profile (7), dimensionless
static stability S in (3) is given by

S =19/o, » (8)

where
N = rkTo/T.. (9)

The solutions of the system (3} with (4) for the
static stability (8) are discussed by Gavrilin (1965) and
Fulton and Schubert (1980). The eigenvalue A, in (3) can
be expressed as

An = H,[D,, (10)
where Dy, is referred to as the equivalent height.
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Fig. 1 Model profile of To as a function of Z(= —¢no).
Obs. 1 denotes a mean tropical temperature distribution (Jor-
dan, 1958) and Obs. 2 a global mean temperature distribution
during the FGGE (Tanaka, 1985).

2.2.1 External mode

The mode corresponding to the largest value of
D, is called the external mode, indicated by the index
n = 1. The value of D, is obtained by solving the tran-
scendental equation

RT 1
s _ = Zp) = 11
(ng 2) tanh(y Z1) = 4, (11)
where L "
2_-_ >0 12
W=g-ngp > (12)

The eigenfunction G, is given by

G1=4A; [sinh(u Z) - cosh(g Z)J 7, (13)

u
(0.5-7)

where

il

) l sinh{21Z7)

wl ()]

=

I _]_'2,_ [1 - cosh(2uZ7)] }



2.2.2 Internal modes

The modes corresponding to the rest of the eigen-
values are called internal modes, indicated by index n > 2.
The values of D, are obtained by solving

RT, 1 B
(gDn - 5) tan(énZ7) = én, (15)
where H )
2=p-->0. 6
=np-—3> (16)
The eigenfunctions G, are given by
_ [ . _ fn . z/z
Gn = A, -sm(E,,Z) ©05-7 coa(é,.Z)} e/t (17)
where
- 2
. -1 _ fn .
A, = {46" -1 (0.5 ) ] sin(2€, Zr)

-r
E 2
+0.527 [1 + (0.5 = r) ]

- ﬁ; [1 — cos(2€,Z7)] }

(ST

2.2.3 Special case

In solving the vertical structure equation (3) with
the boundary conditions (4) for the static stability (8), we

assumed that 1
uzzz—n)\;éo. (19)
There exists a nontrivial solution for % —ni =0, if the
top Zp takes the value Z7¢ defined by
4r
1-2r
For the temperature distribution (7), the value of
r becomes

Zrc = (20)

r = kT /T, (=0.0786368...) (21)

which gives Zrc = 0.37325... (equivalent to o7 = 0.6885).
Fulton and Schubert (1980) show that for the value of Z7
greater than Zrc there exists a countable number of in-
ternal modes in addition to one external mode. We choose
that Zt > Z7c.
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Fig. 2 Vertical profiles of eigenfunctions Gn for the first twelve
vertical modes as functions of Z(= —&nco). The scale for ¢
multiplied by 1000 is shown on the right. Numerals besides
the profiles indicate modal index n. The values of equivalent
height D are listed at the top.
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2.2.4 Profiles of the vertical structure functions

Figure 2 shows the first twelve vertical profiles of
eigenfunctions G, as functions of Z(= —¢no), calculated
for the temperature distribution (7) and Zy = 2.5. The
values of equivalent height D, are listed at the top.

23 Normal mode expansions

For the basic state temperature distribution (7),
the stability parameter S is expressed by (8). We trans-
form the basic equation (1) using the independent variable
Z(= —{no). We then assume that

¥ = ¥(2) expliK (z - C1)), (22)
where K is the dimensionless wavenumber scaled by the
length scale L7! and C is the dimensionless phase velocity
scaled by 2Q0L.. Also, ¥ denotes the amplitude function
which depends on Z only.

After the above procedure, the basic equation (1)

may be written as
£ (&Y _av
n \dZ* dZ
&aU  dU
(o~ (@)=

and the corresponding boundary conditions (2) become

(U -C) {K’q: -
(23)

dv
d—Z' =0 at Z = ZT, (24&)
d¥ av

In order to determine C in Eq. (23) under the
boundary conditions (24), we assume that ¥ and U can
be approximated by the following expansions

Yo

¥"2)=)_ A—nhnG,.(Z), (25)
v

U(Z) =) anGn(2), (26)

where N is an integer and Gn(Z), N > n > 1 are the
eigenfunctions of (3) which satisfy the orthogonality con-
dition (6). The coefficient a, in (26) can be determined
for a given distribution of U(Z) by

Zr
oy = / U(2)Gne"2d2. (27)
0

The vertical distribution of ¥ is obtained once the expan-
sion coefficient hy, in (25) is calculated. It is important to
observe that the expansions (25) and (26) permit for ¥
to satisfy the boundary conditions (24), since each G.(Z)
satisfies the boundary conditions (4).

Substituting (25) and (26) into (23), applying the
vertical structure equation (3), multiplying the resulting
equation by Gee~Z, integrating the result with respect to




Z from 0 to Z¢, and utilizing the orthogonality condition
(6), we obtain

c(1+

K'l
- aL,.[l+——-——

K?

1
5/\ )hn'l'ﬂmhn

0,

Ae _
1)) -

Zy
/ GiGrGne~2d2Z.
0

(28)
where

Lgn = (29)

Eq. (28) is a system of N x N linear homoge-
neous equations. The phase velocity C is determined as
an eigenvalue of this system for given values of parameters
&, B, and K under a given form of U(Z). The values of
interaction coefficient L, are calculated from the verti-
cal structure functions and the values of A, are calculated
from the equivalent height. The vector Ay forn=1to N
is the eigenfunction corresponding to the phase velocity
C. Some of C may appear as complex conjugate pair. In
that case, unstable motions are expected from the imag-
inary part C;. The phase velocity is calculated from the
real part C,.

24 Resuits

We present results of the stability calculation for
a linear basic zonal flow

U(z) =

where A = Up/Zr with Ur being the basic zonal velocity
at Z = Zr. Note that the zonal flow U(Z) in the problem
is an approximation to the linear profile, since U(Z) is
expressed by a finite number of G,(Z) as shown by (26).

Fig. 3a shows the growth rate K|C;| of the gravest
unstable mode for resolution N = 9 as a function of the
shear parameter Ur and the wavelength L(= 2x/K). The
same dimensionless symbols are used in the figure to in-
dicate the units of corresponding dimensional quantities
for simplicity. Fig. 3b shows the phase velocity C — Uy,
where Ups = Ur /2. We see the presence of a narrow sta-
ble region separating Charney (1947) and Green (1960)
types. Note a weak secondary maximum of instability in
the Charney type around L = 2000 km. For L < 1000 km,
it is stable.

Figs. 4a and b illustrate the same as Figs. 3a and
b, except for N = 36. Although the overall patterns are
similar, we see differences in detail indicating the depen-
dence of the solutions on resolution N. Actually, Figs. 4a
and b resemble to Fig. 6 of Garcia and Norscini (1970)
much closer than Figs. 3a and b. For example, now the
region for L < 1000 km appears to be unstable and the
narrow stable region separating the Charney and Green
types is gone. Also, the growth rate pattern of the Green
mode seems to be credible. The dependence of the solu-
tions on vertical modal resolution may be expected as the
same problem exists in finite difference solutions depen-
dent on the number of vertical levels (Staley, 1986).

Nevertheless, it is worthwhile to consider the
question of convergence in the solutions as modal reso-
lution N increases.

AZ,
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Fig. 3a Growth rate K|C;| of the gravest unstable mode in
units of day~! for modal resolution ¥ = 9 as a function of
vertical shear parameter Uz in m sec™} and wavelength L(=
27 /K) in units of 1000 km.

Fig. 3b Same as 3a, except for the phase velocity of the gravest
unstable mode, C — UM in m sec™!, where Ups = Up/2.
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Fig. 4a and 4b are same as Fig. 3a and 3b, respectively, except
for modal resolution N = 36.




Fig. 5a shows the growth rate of the most unstable
mode as a function of modal resolution V for the values
of Ur corresponding to 100 m sec™! and wavelength L
corresponding to 4000 km. Fig. 5b illustrates the same
as 5a, except for the phase velocity. It is clear that the
numerical solutions undergo a large variation with respect .
to N, but they quickly approach to a steady state beyond, 7 ! ' i
say N = 25. Staley (1986) reported the presence of such ‘”’.I;““’é“‘““&;‘“ R g ST ]
a damped oscillation in convergence of solutions with the - R
finite difference method. The value of growth rate for
N = 9 happens to be very close to the converged value. i
The case of NV = 36 is clearly in the state of convergence.
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Fig. 6 shows the same as Fig. 5, except for the case & oo
of L corresponding to 16,000 km. Notice a very different teo
and slow manner of convergence of the solutions in this 4700
. . Ja0o
case, though we can say that the solutions are converging i ot
practically beyond, say N = 50. Obviously, it is intriguing o v 3 o 1000
t k why solutions of the Green mode are so sensitive .- . o .
to as ¢ f lution N. W 4 h thi Fig. 7 Upper panel: Vertical distributions of a normalized
o spectral resolution IN. We need more research on this

question. At least this extreme sensitivity of Green mode
on modal resolution may explain the apparent differences
in the growth rates of Green modes between Figs. 3a and
4a. Fortunately, the vertical structures of the unstable

motions do not appear to depend very strongly on spectral
resolution.

Fig. 7 shows the vertical distributions of a nor-
malized amplitude and the phase of ¢ for L = 4,000 km
(upper panel) and L = 16,000 km (lower panel) with
Ur = 100 m sec™!. We show the case of N = 9 by solid
lines and that of N = 36 by dashed lines. Notice that the
vertical structures of unstable motions for V = 9 and 36
are very close.

amplitude and the phase of ¢ for L = 4,000 km and U7=100

m sec”!. Lower panel: Same as the upper panel, except for
L = 16,000 km.

3. SUMMARY

In this paper, we propose to use normal mode
functions as the basis functions in the spectral method to
discretize model variables in the vertical. As an example,
we solve the problem of baroclinic instability of zonal flow
in a quasi~geostrophic model using vertical normal mode
expansions. The vertical normal modes are constructed
as solutions to the vertical structure equation in the case
of no zonal flow. The growth rate and phase velocity
of unstable motions and their vertical structures are in




agreement with those investigated by Green (1960), Hi-
rota (1968), Garcia and Norscini (1970) and others by
using different methods of solution. The sensitivity of
the most unstable solutions with respect to ‘the number
N of vertical normal mode used is examined in detail.
Although the growth rate and phase velocity of most un-
stable motions indicate the convergence of solutions as IV
is increased, the manner of convergence exhibits irregular,
damped oscillations as in the case of the finite-difference
study by Staley (1986). - The vertical structures of the
most unstable motions appear to be relatively insensitive
to the number of vertical mode used. It seems that the
normal mode spectral method is a viable alternative to the
finite difference method in discretizing model variables in
the vertical.
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