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ABSTRACT

In this study, a new method of 4 dimensional data assimilation technique has

been developed in order to apply the ensemble Kalman filter (EnKF) to high-resolution

models. First, to investigate the basic performance of EnKF, we have confirmed

whether the EnKF converges to the extended Kalman filter (EKF) by increasing the

ensemble members, using a barotropic general circulation model, called barotropic

S-model, under the perfect model scenario in the spectral space. The barotropic S-

model is based on the primitive equations and predicts the vertical mean state of

the atmosphere. Although it has the predictability comparable to the operational

prediction models, the direct computation of the EKF is possible. Therefore, we can

assess the accuracy of the EnKF as a function of the ensemble members.

According to the result of the root mean square error (RMSE), the EnKF con-

verges to the full-rank EKF when the ensemble member is increased to 100. It

is demonstrated that the 20 ensemble members are insufficient with respect to the

convergence. An empirical orthogonal function (EOF) analysis is conducted using

the analysis error covariance matrices for both filters. The structure of the first

EOF (EOF-1) indicates the characteristics of the baroclinic instability waves in mid-

latitudes in both filters, showing the same geographical distributions when it has

converged. It is concluded from the comparison of the RMSE that about 100 ensem-

ble members are required for the non-localized EnKF to converge to the full-rank EKF

for the practical assimilation in the spectral space under the perfect model scenario
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of the barotropic general circulation model of the atmosphere.

Next, based on the confirmed convergence of the EnKF, a local ensemble trans-

form Kalman filter (LETKF) is developed for the Nonhydrostatic Icosahedral Atmo-

spheric Model (NICAM). We refer to this new assimilation system as the NICAM-

LETKF in this study. In addition, an algorithm to adaptively estimate the inflation

parameter and the observational errors is introduced to the LETKF. The feasibil-

ity and stability of the NICAM-LETKF are investigated under the perfect model

scenario.

According to the results, it is confirmed that the converged analysis errors of the

NICAM-LETKF are smaller than the observational errors, and the magnitude and

distribution of the RMSEs are comparable to those of the ensemble spreads. In our

experiments, it is confirmed that the inflation parameter is optimally tuned and the

observational errors are close to the truth. It is concluded that the NICAM-LETKF

works appropriately and stably under the perfect model scenario even if the inflation

parameter and the observational errors are adaptively estimated within the LETKF.

Finally, a new method of multi-scale localization technique is developed in or-

der to apply the LETKF to the high-resolution model. In a very high-resolution

nonhydrostatic general circulation model such as NICAM, the excessive localization

may limit the region of the available observations within a narrower area around the

analysis point for a limited ensemble size. In this situation, the larger-scale struc-

tures than the localization would be excluded from the assimilation. To retain the

larger-scale structures, a dual-localization method has been proposed, that consid-
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ers two separated localization scales simultaneously. The method is examined with

a low-resolution atmospheric model called SPEEDY. The dual-localization method

analyzes small-scale analysis increment and large-scale analysis increment separately

using spatial smoothing. The small and large localization scales and the smoothing

function are the control parameters of the dual-localization method. In this study, we

have investigated the parameter sensitivities in observation system simulation exper-

iments. Also, the sensitivity to the two localization scales is carefully investigated.

The results show that the dual-localization method outperforms the traditional single

localization for relatively wide 400 km ranges of the two localization scales. This sug-

gests that we can avoid fine tuning of the two localization scales. This new method

can be easily extended to triple- or multi-scale localization methods.

In this study, we have confirmed that the EnKF converges to the EKF with

low-resolution atmospheric model. We have concluded that the application of the

multi-scale localization methods to the EnKF may construct the scientific basis of

the future data assimilation for the very high-resolution models.

Key words: Data assimilation, EKF, EnKF, LETKF, Barotropic S-model, NICAM,

dual-localization approach
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CHAPTER I

INTRODUCTION

Data assimilation generates accurate initial conditions by extracting the most

information from both model forecasts and observations. Numerical weather predic-

tion (NWP) is generally sensitive to the initial conditions, and it is essential to obtain

better initial conditions using more advanced data assimilation methods. Many oper-

ational centers use 3D-Var (3-dimensional variational data assimilation; Parrish and

Derber 1992), which is an economical and accurate statistical interpolation scheme,

but 3D-Var cannot treat flow-dependent information. In some operational centers,

4D-Var (4-dimensional variational data assimilation; e.g., H. Liu and X. Zou 2001,

and Pierre and Jean-Noël 2001) has been used recently, and the accuracy is much

higher than the 3D-Var. The 4D-Var is one of advanced data assimilation methods

which can the treat flow-dependent information. In addition to its high accuracy,

the 4D-Var allows the assimilation of many observations, for example, asynchronous

observations such as satellite radiances at their correct observation time.

Kalman filter (Kalman 1960, hereafter KF) is the optimal filter for linear sys-

tems with Gaussian error distribution. Extended Kalman filter may be proposed by

Jazwinski (1970) to apply the KF to nonlinear systems. However, it is known that

the KF may not be always stable in the case of being applied to nonlinear systems be-

cause the KF is based on the linear theory (e.g., Pham 2001). In the case of applying
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the EKF to the general circulation models (GCMs), we need to consider their large

degrees of freedom, and their orders are at least O(106). So, we cannot implement

the EKF with the GCMs because it is not feasible to compute a time evolution of

error covariance matrix.

Then, Evensen (1994) approximated the covariance matrix of the KF using

ensemble predictions, which was called an ensemble Kalman filter (EnKF). The EnKF

is also one of advanced data assimilation methods. There are a number of studies

about the comparison of the 3D-Var, 4D-Var or EnKF with various numerical models.

For example, Whitaker et al. (2008) showed that the EnKF outperformed 3D-Var

with the NCEP global forecast system, Fertig et al. (2007) compared LETKF and

4D-Var with the Lorenz-96 system (Lorenz 1996), and Kalnay et al. (2007) discussed

the performances of EnKF and 4D-Var. On the other hand, the comparison of the

EKF and the EnKF is hardly studied with the atmospheric models because it is not

feasible to implement the EKF. Then Zang and Malanotte-Rizzoli (2003) compared

the reduced-rank EKF and EnKF with the ocean model. They confirmed that for

the strongly nonlinear case, the EnKF outperforms the reduced-rank EKF, and for

the weak nonlinear case the performances of the reduced-rank EKF and EnKF are

similar. Their reduced-rank EKF assumes a steady state filter. So the reduced-rank

EKF cannot treat the rapidly changing atmospheric states, and it is necessary to

compare EKF and EnKF with an atmospheric model.

Although the EnKF has not been hardly compared with the EKF yet in the

atmospheric models, a number of research articles on EnKF have been published so
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far. Various EnKF approaches have been suggested, such as the Ensemble Adjust-

ment Kalman Filter (EAKF, Anderson 2001), Serial Ensemble Square Root Filter

(Whitaker and Hamill 2002), Ensemble Transform Kalman Filter (ETKF; Bishop et

al. 2001), and Local Ensemble Kalman Filter (LEKF; Ott et al. 2004). Hunt et al.

(2007) suggested the Local Ensemble Transform Kalman Filter (LETKF) by applying

the ETKF algorithm to the LEKF, and the LETKF has an important advantage in

assimilating the observations in each ”local patch”, where the local patch is defined

as an area around the analysis grid point and is also made up by the surrounding

grid points. Due to this advantage, the LETKF has a higher performance for the im-

plementation in parallel computers. Miyoshi and Yamane (2007) applied the LETKF

to the Earth Simulator global model known as the AFES (Atmospheric General Cir-

culation Model for the Earth Simulator; Ohfuchi et al. 2004) and investigated its

performance in detail. Miyoshi et al. (2007) removed the local patch applied the new

LETKF to AFES with a T159L48 resolution, and they investigated the stability of the

LETKF without the local patches. Kalnay and Yang (2010) proposed and tested the

RIP (Running-In-Place) approach with the LETKF to accelerate the spin-up time.

And the EnKF are also applied to regional models. Zhang et al. (2006) investigated

the EnKF with a nonhydrostatic regional model and gave details on the dependence

of EnKF performance on error growth rate and scales. Seko et al. (2011) investigated

an intense rainfall event by applying the LETKF to the JMANHM (Saito et al. 2006).

Miyoshi and Kunii (2012) applied the LETKF to the WRF (Weather Research and

Forecasting; Skamarock et al. 2005) model.

— 3 —



In high-resolution data assimilation, however, localization (Houtekamer and

Mitchell 1998; Hamill et al. 2001) is a problem. When we apply EnKF to realistic

meteorological problems, localization plays an essential role in dealing with spurious

sampling errors due to a generally limited ensemble size. EnKF is generally unsta-

ble without localization mainly because of sampling errors between distant locations.

Localization limits the impact of observations within a certain distance defined by

a prescribed localization function. The localization function is usually a distance-

dependent function that drops to zero at a certain distance, and the Gaspari and

Cohn (1999)’s fifth-order polynomial function is a typical choice. The optimal local-

ization scale depends on several factors including the model resolution and ensemble

size; the localization scale becomes generally smaller for higher-resolution models. For

example, Miyoshi et al. (2010) applied the 400-km localization scale for a T319/L40

(horizontal resolution up to 319 wavenumbers and 40 vertical levels) global model, and

Miyoshi et al. (2007) applied the 500-km localization scale for the T159/L48 AFES.

By contrast, for the T30/L7 SPEEDY model (Molteni 2003) the optimal localization

scale is found to be 700 km (Kang, personal communication). In mesoscale model,

Zhang et al. (2009) applied about 340-km, 110-km and 40-km localization scale for

the WRF model whose corresponding horizontal resolutions are 40.5 km, 13.5 km

and 4.5 km, respectively. Yussouf and Stensrud (2010) applied about a 1-km localiza-

tion scale (the localization radius is 4 km) with 1-km horizontal resolution model for

radar data assimilation. In such cases, observations are used only in such a limited

distance, although at least some observations such as rawinsondes are expected to

observe synoptic-scale weather with at least an O(100)-km scale.
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In this study, in view of future data assimilation in NWP, EnKF methods are

investigated. First, to investigate the performances of EnKF, the EKF and EnKF

are compared. The comparison of the EKF and the EnKF has been hardly studied

with the atmospheric models. In this study, Kondo (2007) and Kondo and Tanaka

(2009a), the EnKF is compared with the EKF under a perfect model scenario using

a barotropic S-model (Tanaka 2003), which is based on the primitive equations and

has only 410 degrees of freedom. So, it is possible to implement the EKF at full rank.

The full-rank EKF can treat the rapidly changing atmospheric states completely.

We investigate the accuracy of the EnKF in comparison to the EKF by the root

mean square error (RMSE) of both filters. In addition to comparing the analysis

accuracy, we investigate how much the eigenvalues and the eigenvectors of the analysis

covariance matrices coincide with each other for EnKF and EKF.

Next, the LETKF is applied to the NICAM (Nonhydrostatic Icosahedral At-

mospheric Model; Satoh et al. 2008) and the NICAM-LEKTF are constructed for

the future cloud-resolving data assimilation. The NICAM is a new type of ultra-

high resolution atmospheric general circulation model, and is designed to perform

cloud-resolving simulations by directly calculating deep convection and meso-scale

circulation, which plays a key role not only in the tropical circulations but also in the

entire general circulation of the atmosphere. As the model adopts the nonhydrostatic

equations and icosahedral grid structure. However, the assimilation system for the

NICAM has not been developed and the optimum initial condition for the NICAM

does not yet exist. Kondo (2009) applied the non-local patch version of the LETKF
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to the NICAM (referred to as NICAM-LETKF), but did not investigate the adaptive

estimation of the inflation parameter and observational errors (Miyoshi 2005, Li et al.

2009a). Therefore, this study and Kondo and Tanaka (2009b) investigate the feasi-

bility and stability of the NICAM-LETKF with adaptive estimation of both inflation

parameter and observational errors under the perfect model scenario. This is the first

test of the LETKF with a global non-hydrostatic model, although the model should

still behave hydrostatically with the horizontal resolution of 224 km.

Finally, a new method of multi-scale localization is developed and is investigated

for the high-resolution data assimilation in order to tackle the localization problem.

If we have a very high-resolution mesoscale model with a 1-km or even finer grid

spacing, the localization scale would likely be limited up to O(10)-km. Therefore,

if we apply narrow localization up to O(10)-km for high resolution models, EnKF

may not account for larger-scale errors even though the observations shall provide

useful information at an O(100)-km scale. Multi-scale consideration is essential to

tackle these situations and to use precious observations more effectively. In Zhang et

al. (2009), three different localization scales are applied to three different resolutions

models in a two-way nesting system to explore the uses of Doppler radar observa-

tions for cloud-resolving hurricane analysis, initialization and prediction. Buehner

(2012) proposed a spatial and spectral covariance localization approach, which con-

siders separate scales simultaneously. In this way, we can account for larger-scale

error covariances separately from smaller-scale error covariances. Larger-scale error

covariances are expected to have larger-scale structure, which usually requires large-
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scale localization. This enables longer-distance impact from observations even if the

model resolution is high. The separate consideration of higher-resolution error covari-

ances allows simultaneous analysis of fine structure near the observations. Inspired

by Buehner (2012), Miyoshi and Kondo (2013) and Kondo et al. (2013) proposed the

dual-localization approach that considers two localization scales simultaneously. In

the dual-localization method, longer-range analysis increments are analyzed by apply-

ing a spatial smoothing to the ensemble perturbations and using a larger localization

scale, while simultaneously, shorter-range analysis increments are analyzed by using

a smaller localization scale. Here, the smoothing function and two localization scales

are the control parameters of the dual-localization approach.

To make this paper self-contained, in chapter II the EKF and EnKF are de-

scribed. Chapter III, IV and V show the comparison of the EKF and EnKF, the

NICAM-LETKF and the multi-localization approach. Finally, concluding summary

is provided in chapter VI.
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CHAPTER II

Kalman Filter and Ensemble Kalman

Filter

2.1 Kalman Filter

Kalman (1960) suggested the KF algorithm which is optimal when evolution

of error is linear and the probability distribution of error is the normal distribution.

The EKF is suggested to the KF apply to nonlinear systems (Jazwinski 1970). By

applying a linear model M to a state variable xat−1, a forecast at time t is written by

xft = Mxat−1, (2.1)

where xt denotes an n-dimensional state variable at time t. The superscripts f , a

represent forecast and analysis, respectively. In the same way, the true evolution at

t is written as

xtt = Mtxtt−1, (2.2)

where the superscript t represents the truth. However, since the model M is not

perfect, so xtt is written as

xtt = Mxtt−1 − q, (2.3)
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where q denotes the model error, and 〈q〉 = 0 if the model is unbiased. 〈〉 represents

an average over many cases or statistical expectation. The analysis/forecast errors

δxa, δxf are defined by

δxa,f = xa,f − xt. (2.4)

By using Eqs. (2.3) and (2.4), at time t a forecast error covariance, i.e., background

error covariance Pf
t is obtained by

Pf
t =

〈
δxft

(
δxft

)>〉
,

=

〈(
xft − xtt

)(
xft − xtt

)>〉
,

=
〈(

Mxat−1 − (Mxtt−1 − q)
) (

Mxat−1 − (Mxtt−1 − q)
)>〉

,

=
〈(

M
(
xat−1 − xtt−1

)
+ q)

) (
M
(
xat−1 − xtt−1

)
+ q)

)>〉
,

=
〈(

Mδxat−1 + q
) (

Mδxat−1 + q
)>〉

,

=
〈(

Mδxat−1

) (
Mδxat−1

)>
+
(
Mδxat−1

)
q> + q

(
Mδxat−1

)>
+ qq>

〉
,

=
〈
Mδxat−1

(
δxat−1

)>
M> + qq>

〉
,

= MPa
t−1M

> + Q, (2.5)

where Pa
t−1 =

〈
δxat−1

(
δxat−1

)>〉
represents an analysis error covariance at t−1. Some

cross terms such as
〈(

Mδxat−1

)
q>
〉

are zeroed out because we assume that there is

no correlation between the analysis error δxat−1 and the model error q.

In the EKF, a nonlinear model M is expressed using a linear tangent model M

around xt.

M =
∂M

∂x

∣∣∣∣
xt

. (2.6)

— 9 —



Moreover, Eq. (2.1) is replaced by

xft = M(xat−1). (2.7)

In the nonlinear scenario the dynamical system is integrated by the forecast step

from time t − 1 to t followed by an analysis step at time t to estimate the most

likely system state. In the forecast step the EKF propagates the model solution from

time t− 1 to t, and in the analysis step the EKF combines the information provided

by the observations at that time with the propagated information from the prior

observations. In the EKF, Eqs. (2.7) and (2.5) describe how the model propagates

the state variable and the covariance to the future.

In the analysis step, an analysis xa is a weighted average of forecast xf and

observation yo. The analysis xa is obtained by

xat = (I−KtH) xft + Kty
o,

= xft + Kt

(
yo −Hxft

)
, (2.8)

where Kt is the Kalman gain matrix at time t, which is a weight matrix to the

observation. H denotes the linear tangent matrix of the observation operator. The

observation error δyt is obtained by

δyt = yot −Hxtt, (2.9)

and yot −Hxft is written as

yot −Hxft = yot −Hxtt + Hxtt −Hxft ,

= δyot −Hδxft . (2.10)
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From Eq. (2.8) the analysis error δxat is obtained by

δxat = xat − xtt,

= (I−KtH) xft + Kty
o − xtt,

= (I−KtH) δxft + Ktδy
o. (2.11)

Therefore, the analysis error covariance Pa
t is obtained by

Pa
t =

〈
δxat (δxat )

>
〉
,

=

〈(
(I−KtH) δxft + Ktδy

o
)(

(I−KtH) δxft + Ktδy
o
)>〉

,

=
〈

(I−KtH) δxft

(
δxft

)
(I−KtH)>

〉
+
〈

(I−KtH) δxft (Ktδy
o)>
〉
,

+

〈
Ktδy

o
(

(I−KtH) δxft

)>〉
+
〈
Kδyo (Kδyo)>

〉
,

= (I−KtH) Pf
t (I−KtH)> + KtRK>. (2.12)

The cross term δxft (Ktδy
o)> is equal to zero because we assume that there is no

correlation between δxat and δxft . The variance of the analysis error is represent

trace(Pa), and when
∂

∂K
(tracePa) is equal to zero, the Kalman gain K makes

trace(Pa) the smallest. In order to obtain the Kalman gain K, we should solve

∂

∂K
(tracePa) = 0.

∂

∂K
(trace(Pa)) =

∂

∂K

[
trace

(
(I−KH) Pf (I−KH)> + KRK>

)]
,

=
∂

∂K

[
trace

(
Pf −PfH>K> −KHPf + KHPfH>K>

)
+ KRK>

]
.

And because of the forecast error covariance Pf is symmetric matrix,

trace
(
PfH>K>

)
= trace

(
KHPf

)>
,

= trace
(
KHPf

)
.
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Therefore,

∂

∂K
(trace(Pa)) =

∂

∂K

[
trace(Pf )− 2trace(KHPf ) ,

+ trace(KHPfH>K>) + trace(KRK>)
]
. (2.13)

Here, the formulas of matrix is as follows:

∂

∂A

(
trace(ABA>)

)
= A(B + B>), (2.14)

∂

∂A
(trace(AB)) = B>. (2.15)

Applying the formulas (Gelb et al. 1974; eqs. (2.1-72) and (2.1-73)),

∂

∂K
(trace(Pa)) = −2PfH> + 2KHPfH> + 2KR,

= −2 (I−KH) PfH> + 2KR = 0, (2.16)

where the observation error covariance matrix R is a symmetric matrix. Therefore,

K = PfH>
(
HPfH> + R

)−1
. (2.17)

By substituting Eq. (2.17) into Eq. (2.12), the analysis error covariance matrix Pa

is obtained by (HPfH> + R = A)

Pa = (I−KH) Pf (I−KH)> + KRK>,

=
(
I−PfH>A−1H

)
Pf
(
I−PfH>A−1H

)>
+ PfH>A−1R

(
PfH>A−1

)>
,

= Pf − 2PfH>A−1HPf + PfH>A−1HPfH>A−1HPf + PfH>A−1RA−1HPf ,

= Pf − 2PfH>A−1HPf + PfH>A−1
(
HPfH> + R

)−1
A−1HPf ,

= Pf − 2PfH>A−1HPf + PfH>A−1AA−1HPf ,

= Pf −PfH>
(
HPfH> + R

)−1
HPf ,

= (I−KH) Pf . (2.18)
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In summary, the algorithm of the EKF is as follows: In the forecast step, the

state variable xf and the forecast error covariance Pf at t are written as

xft = Mxat−1, (2.19)

Pf
t = MPa

t−1M
> + Q. (2.5)

In the analysis step, the Kalman gain weight matrix K is written as

Kt = Pf
t H
>
(
HPf

t H
> + R

)−1

. (2.17)

The analysis xa and the analysis error covariance Pa are written as

xat = xft + Kt

(
yo −Hxft

)
, (2.8)

Pa
t = (I−KtH) Pf

t . (2.18)

EKF can treat the flow-dependent covariance explicitly. In the EKF algorithm

we must compute MPa
t−1M

>, which size is n by n. n represents degree of freedom

of the model M . In the atmospheric models, n is generally over O(106), so it is not

feasible to compute MPa
t−1M

> in the EKF.

2.2 Ensemble Kalman Filter

It is noteworthy that Pf
t in Eq. (2.5) requires the evolution of Pa

t , which is

impossible for the general AGCMs, since the degree of freedom n of the AGCMs is
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at least O(106). The implementation of EKF costs much computational resources to

compute the covariance matrices of n × n. In addition, the EKF uses the linearized

tangent model M and its adjoint model M> to compute the covariance matrix, which

is not easy and is so difficult to compute for the AGCMs, and if the nonlinear model

M is updated, it is necessary that M and M> are updated.

In contrast, the EnKF does not require the computation of M and M> of

n × n matrices. Moreover, the EnKF can use the nonlinear model M and nonlinear

operator H instead of M, M> and H. The EKF is approximated by the EnKF using

the technique of ensemble predictions. The main idea of the EnKF is as follows. First,

we set an ensemble of the initial conditions at time t− 1 which spread around xat−1 .

The analysis error covariance Pa
t−1 can be estimated from the ensemble perturbations.

Next, the nonlinear model propagates each ensemble member to time t. Then we can

estimate Pf
t based on perturbations of the propagated ensemble members at time t.

There are many possible choices of the analysis ensemble. A variety of EnKFs

have been proposed, and one of the main differences among them is how the analysis

ensemble is chosen. In this section, we choose the LETKF approach. In the LETKF

we compute the analysis step in the space spanned by the ensemble perturbations.

Let X denotes an n × m matrix composed of m ensemble members of n-

dimensional variables in the local patch. The local patch is defined as a l × l area of

grid points. X is written as

X =
[
x(1), x(2), · · · , x(m)

]
, (2.20)
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where x(i) denotes the i-th ensemble member. Predictions are performed for each

ensemble member according to the nonlinear model,

Xf
t = M(Xa

t−1). (2.21)

In order to estimate the forecast error covariance, we evaluate the ensemble of the

forecast errors:

δXf
t =

[
xf(1) − x̄f , xf(2) − x̄f , · · · ,xf(m) − x̄f

]
,

= Xf
t − X̄

f
t , (2.22)

where x̄ft and X̄
f
t denote the ensemble mean vector and matrix of the forecast, re-

spectively. The forecast error covariance Pf
t may be estimated as,

Pf
t =

δXf
t

(
δXf

t

)>

m− 1
= δXf

t P̃
f

t

(
δXf

t

)>
, (2.23)

where, P̃
f

t =
I

m− 1
. The P̃

f

t is a covariance matrix in the space spanned by the

ensemble forecast errors in the m-dimensional space. Similarly, the analysis error

covariance matrix Pa
t may be computed by

Pa
t = δXf

t P̃
a

t

(
δXf

t

)>
, (2.24)

where P̃
a

is given by

P̃
a

t =

[
(m− 1)I/ρ+

(
HδXf

t

)>
R−1

(
HδXf

t

)]−1

,

=
[
VΛV>

]−1
,

= VΛ−1V>, (2.25)

where ρ is a covariance inflation parameter, which inflates the analysis error covariance

matrix to avoid underestimating the error covariance and filter divergence. ρ is slightly
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larger than 1, and the covariance inflation is expressed by multiplying the square root

of ρ to the δXf . The analysis error covariance P̃
a

t can be calculated by solving the

eigenvalue problem of (P̃
a

t )
−1, where Λ is a diagonal matrix containing the eigenvalues,

and V is a matrix containing eigenvectors with the orthonormal conditions V>V = I.

We assume that the observational errors are uncorrelated. Therefore, R is diagonal,

and the inverse is trivial. In the model space, the analysis ensemble mean is evaluated

as

x̄at = x̄ft + δXf
t P̃

a

t

(
HδXf

t

)>
R−1

(
yot −Hx̄ft

)
, (2.26)

and the analysis perturbation may be obtained as,

δXa
t = δXf

t

[
(m− 1)P̃

a

t

]1/2

,

= δXf
t

√
m− 1VΛ−1/2V>. (2.27)

Finally, the analysis ensemble Xa
t is prepared using Eq. (2.27) as,

Xa
t = X̄

a
t + δXa

t , (2.28)

where X̄
a
t is the ensemble mean matrix of the analysis. Furthermore, we can use the

nonlinear observational operator H in place of the linear observational operator H as

HδXf ' H(Xf )−H(X̄
f
), (2.29)

Hx̄f ' H(x̄f ). (2.30)

Hence, LETKF has been completed without using the Kalman gain matrix and the

linear operators, explicitly.
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CHAPTER III

Comparison of the Extended Kalman

Filter and the Ensemble Kalman Filter

using the Barotropic General Circulation

Model

3.1 Barotropic S-Model

The model equations used in this chapter are the 3D spectral primitive equa-

tions on a sphere (Tanaka 2003). A system of primitive equations with a spherical

coordinate of longitude λ, latitude θ, pressure p, and time t may be reduced to three

prognostic equations of horizontal motions and thermodynamics for three dependent

variables (u, v, φ). Here, u and v are the horizontal velocity. The variable φ is a

departure of the local isobaric geopotential from the global mean reference state. By

expanding the state variables in 3D normal mode functions, we obtain a system of

3D spectral primitive equations in terms of the spectral expansion coefficients:

dwi
dτ

= −iσiwi − i
∑

jk

rijkwjwk + fi, i = 1, 2, 3, . . . , (3.1)
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where τ is a dimensionless time, σi is the eigen-frequency of the Laplace’s tidal equa-

tion, wi is the expansion coefficient of the state variables, fi is the expansion coefficient

of the external forcing of viscosity and diabatic heating rate, and rijk is the interaction

coefficient for nonlinear wave-wave interactions.

In the 3D spectral representation, the vertical expansion basis functions may be

divided into barotropic (m = 0) and baroclinic (m 6= 0) components. In this chapter,

we use only the barotropic components (m = 0) of Rossby modes, by truncating

all the baroclinic modes and high-frequency gravity modes (Kasahara 1977). Such a

model is equivalent to predicting the vertical average of meteorological variables. The

zonal and meridional wave truncation of the present model is equivalent to rhomboidal

20 with an equatorial wall. Because wi is a complex-valued state variable, only the

positive (and zero) zonal wave numbers are considered. Therefore, the degree of

freedom of the system is reduced enormously to only N=410:

dwi
dτ

= −iσiwi − i
∑

jk

rijkwjwk + fi + gi, i = 1, 2, 3, . . . . (3.2)

The spectral equation for such a barotropic model Eq. (3.2) has the same form as

for the baroclinic model Eq. (3.1), except for the fact that the barotropic-baroclinic

interaction gi appears on the right-hand side. Henceforth, we combine fi + gi and

designate it as the external forcing si of the barotropic model.

The parameterization of the external forcing si = fi + gi in Eq. (3.2) is pre-

sented by Tanaka (1991, 1998) considering the dynamical processes of the baroclinic

instability, the topographic forcing, the biharmonic diffusion, the zonal surface stress,
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and the Ekman pumping. Since those parameterizations are fundamentally linear

approximations to the true forcing and will never be perfect for the real atmosphere,

we have attempted in this chapter to obtain the best linear fit of the forcing si based

on the 56 years of the NCEP/NCAR reanalysis from 1950 to 2005 as in Tanaka and

Nohara (2001):

si = s̃i + s
′
i = s̃i + Aijwj + Bijw

∗
j + εi, (3.3)

where s̃i and s
′
i are the climate and anomaly of si, respectively. The asterisk for

wi represents a complex conjugate of wi. The linear matrices Aij and Bij can be

obtained by the standard method of the least square fitting for s
′
i to minimize the

regression residual εi. However, the system matrices Aij and Bij mostly represent

topographic forcing (TF). For this reason, we have added the energy source in terms

of the parameterized baroclinic instability (BC) described by Tanaka (1998). The

increased energy source at the synoptic scale requires an additional energy sink, so the

biharmonic diffusion (DF), the zonal surface stress (DZ), and the Ekman pumping

(DE) are also included in reference to the resulting energy spectrum of the model

climate. The final form of the external forcing si is expressed as

si = s̃i + Aijwj + Bijw
∗
j + (BC)ijwj + (DF )ijwj + (DZ)ijwj + (DE)ijwj. (3.4)

This model with such a forcing is called “barotropic S-model” since a part of forcing

is obtained statistically from observation, solving the inverse problem.
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3.2 Experimental Settings

The EKF and the LETKF are implemented to the abovementioned barotropic

S-model under the perfect model scenario.

First, the EKF and LETKF assimilate the observations every 6 hours in the

spectral space. In the physical space with the small ensemble size, the spurious

covariance among distant points due to sampling errors can be reduced by covari-

ance localization (Houtekamer and Michell 2001; Hamill et al. 2001). According

to Szunyogh et al. (2005), there is no clear difference between the ensemble size

40 and 80 in the case of optimum localization. However, in the spectral space,

the error covariance of the spectral expansion coefficient wi cannot be appropri-

ately localized, because interactions between different coefficients are highly non-

local. So, the LETKF in this study does not employ the localization when the

assimilation is conducted in the spectral space. The LETKF experiments employ

20, 50, 100, 410 and 1000 ensemble members. The period of the experimental as-

similation is from 00Z 1 January 1990 to 00Z 31 January 1990. The covariance

inflation parameter ρmnonlocal(m = 20, 50, 100, 410, 1000) is optimized for each exper-

iment to minimize the estimated errors ranging from 1.005 to 1.10. Specifically,

ρ20
nonlocal = 1.10, ρ50

nonlocal = 1.03, ρ100
nonlocal = 1.01, ρ410

nonlocal = 1.005, ρ1000
nonlocal = 1.005.

The truth of wti is the model output from the control run, and the observation woi

is made by adding random vectors to the truth. The random vectors are generated

from the normal distribution having the observational error statistics at the gravity
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wave level, which is a white noise of 50 J/m2 in its energy level (see the observational

analysis by Tanaka 1985). The noise in its energy level is equivalent to about 5.9 m

in barotropic height and 1.0 m/s in wind speed. For simplicity, we assume that all

model variables are observed, i.e., the dimension of the observation woi is the same

as the dimension of the truth wti . So, H and its tangent linear operator H are equal

to the unit matrix I. We assume that the model error covariance Q is 0 because

the perfect model has been assumed. At each analysis time, we evaluate the analysis

error using the RMSE between the true state and the analysis ensemble mean and

compute the ensemble spread. The ensemble spread is measured using the trace of

the analysis covariance matrix in Eq. (2.24).

Second, the LETKF experiment is conducted in the physical space for the con-

firmation purpose in order to investigate the impacts of the localization and in order

to investigate the influence of assimilation in the physical space and in the spectral

space. This LETKF is the non-local patch version (Miyoshi et al. 2007). The ensem-

ble member is chosen to be 20, 50, 100 and 410 and the observations are assimilated

every 6 hours. To assimilate the same observations of the experiments as in the spec-

tral space, the observations in spectral space are transformed to the observations in

physical space, and the observational covariance matrix is computed using the ob-

servations in physical space. The observational elements are barotropic height and

horizontal wind components. The physical space for the barotropic model is con-

structed on the 2-dimensional space, with 72 grid points in longitudes and 30 grid

points in Gaussian latitudes in the Northern Hemisphere. The observations cover

— 21 —



about 17 % grid points of the entire 2-dimensional grid space. It is assumed that the

thinned observational errors are not correlated with each other. So the observational

error covariance matrix is diagonal. In this study, Gaussian-like fifth order polyno-

mial function (Gaspari and Cohn 1999) is adopted for the localization, by multiplying

its inverse to the diagonal elements of the observational covariance matrix. The lo-

calization scale is defined by the one standard deviation. The horizontal localization

scales for 20, 50, 100, and 410 members are 900 km, 900 km, 1200 km and 1200 km,

respectively. The Gaussian-like function drops to zero at about 3300 km to 4400 km.

The covariance inflation parameter ρmlocal(m = 20, 50, 100, 410) is changed for each

experiment to minimize the estimated errors ranging from 1.07 to 1.08. Specifically,

ρ20
local = 1.08, ρ50

local = 1.07, ρ100
local = 1.08, ρ410

local = 1.08. The other settings are the

same with the non-localized LETKF experiments.

In this study, the non-localized LETKF is called ”EnKF” which assimilates the

observations in spectral space, and the localized LETKF is called ”LETKF” which

assimilates the observations in the physical space.

The initial ensemble for the first step of the assimilation experiments is prepared

by the method of lagged average forecast (LAF) ensemble. First, we conduct many

forecasts starting from different observational times. Let xt be the initial value at the

valid time t. If we write the forecast at time t starting from one day before as x
f(1)
t ,

then the forecast with the initial value at k days before may be denoted as x
f(k)
t .

The forecast errors δx
f(i)
t up to i = 1 to k are then orthogonalized by analyzing the

principal components. In this experiment, the norms of ensemble perturbations are
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set to about 4 times of the observational error to have the magnitude of the forecast

error at 7-day prediction because the error growth of the barotropic S-model is known

to be relatively weak as demonstrated by Tanaka and Nohara (2001). By cycling

the data assimilation, the norm of the ensemble perturbation becomes smaller. The

predictions up to k days provide m = 2k ensemble members of the initial perturbation

by the pair of positive and negative signs of the vector. Thus, we can compute the

initial perturbations by this method up to m = 2N = 820. When we need more initial

perturbations, we repeat the same procedure using different years of the winter data,

although those are not orthogonal. However, there is no problem because the EnKF

updates these ensemble members to reflect the analysis error covariance at every

analysis cycle.

The initial Pa of the EKF is set as 2 times of the observational covariance matrix

R. This assumption does not have any problem because the Pa is updated by the

EKF at every analysis cycle.

3.3 Results

Figure 3.1 shows the eigenvalues of the analysis covariance matrices for the EKF

and the EnKFs on 00Z 31 January 1990, after the filters have converged to the truth.

There are only 19, 49, and 99 eigenvalues for the EnKF of 20, 50, and 100 ensemble

members, respectively. The eigenvalues for the analysis covariance show the variance

spectrum of the analysis error. The variance spectra of the EnKF for 20 ensemble
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members differ from that of the EKF, but the spectra are approximately the same

as that of the EKF for the 50 ensemble members. Interestingly, the magnitudes of

eigenvalues are smaller than that of the EKF for the ensemble members 100 and more.

The difference may come from the assumption of the linearization in the EKF, which

is not assumed in the EnKF. It is found from the result that the EnKF has almost

converged when the ensemble member has increased to 100. The magnitude of the

100th eigenvalue for the EKF is about 1/105 of that of the first eigenvalue, suggesting

that the matrix almost degenerates.

Figure 3.2 illustrates the first eigenvectors of the analysis covariance matrices

for the EKF and the EnKFs on the same day as in Fig. 3.1, describing the most

dominant pattern of the analysis error. We can see the waves of baroclinic instability

over the east Pacific Ocean, the Northern American continent, and the Atlantic Ocean

in the cases of the EKF and the EnKFs of 50, 100, 410 and 1000 members. On the

other hand, these waves are absent in the cases of EnKFs of 20 members. In all

cases there is another peak of error over the Arctic. We can confirm that both of the

EKF and EnKF have converged to the same error pattern for 50, 100, 410 and 1000

members. The second eigenvectors (not shown) are not the same in the EKF and

EnKF probably due to the assumption of the model linearization in the EKF.

Figure 3.3 shows the time series of the RMSEs against the truth of the state

variables wi and the analysis ensemble spreads for the EKF and the EnKFs during

one month. The observational error is about 2.25×10−4. The analysis errors for both

EKF and EnKFs are reduced by assimilating the observations iteratively. In the case
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of the EnKFs with 50, 100, 410 and 1000 members, the RMSEs are comparable to

the ensemble spread, respectively. In the case of the EnKF of 20 members, however,

the RMSE is larger than the spread. This shows that the EnKF of 20 members may

underestimate the forecast error covariance and does not assimilate the observations.

The RMSEs show daily variations, but the ensemble spreads show less daily variations.

The RMSEs generally have the same order as the ensemble spreads except for the

EnKF of 20 members in this study. The degree of the ensemble spreads can be

adjusted by the covariance inflation, which is a constant but can be tuned so that the

RMSEs is minimized and becomes comparable to the ensemble spreads.

Figure 3.4 illustrates the analysis fields of barotropic height (contours) and the

analysis error against the truth on 00Z 31 January 1990. The analysis error of the

EnKF for 20 members is larger than that of the EKF. That of the EnKF of 50

members is almost the same as that of the EKF. Moreover, the analysis error of the

EnKF for 410 members is very similar to that of the EnKF for 1000 members. The

error patterns of the EKF and EnKF of more than 50 members are similar, and are

characterized by the baroclinic instability. These results indicate that the accuracy

of the EnKF of 50 members and above is almost the same as that of the EKF.

In order to increase the statistical confidence of the result, we repeated the

same experiments for 10 cases in different seasons and different years. Figure 3.5

shows the time series of the mean RMSEs against the truth of the state variables wi

for the average of the 10 cases. The analysis errors decrease for both the EKF and

EnKFs by assimilating the observations iteratively. The analysis RMSE of EnKF
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for 20 members is the largest, and that for 410 and 1000 members are the smallest.

Interestingly, the analysis RMSEs for 100, 410 and 1000 members are smaller than

that of the EKF, probably due to the error involved by the model linearization of the

EKF. The magnitude of the analysis RMSE for the EKF is almost the same as the

EnKF for sufficient number of the members. We see that the EnKF has converged to

the EKF for 100 members.

Finally, Fig. 3.6 shows the time series of the RMSEs against the truth of the

state variables wi for the LETKF evaluated in the physical space with localization.

The results are compared with the EnKF of 50 ensemble members during one month.

The observational error is about 2.25 × 10−4 as before. The analysis RMSE of each

LETKF decreases with time, and the RMSE becomes smaller than the observational

error in each experiment. Moreover, the analysis ensemble spreads are comparable

to the RMSEs in each experiment (not shown). It seems that the analysis RMSEs of

the LETKF have converged for 20 members and above. However, the RMSE in the

physical space is much larger than that in the spectral space. Although we attempted

to expand the localization scale up to 1500 km, the RMSEs are not improved. It is

found by the present study that the RMSE of the LETKF in the physical space is not

converging to the EnKF in the spectral space where the localization is not assumed.

It is considered that there are some reasons in this result, so this result is discussed

in chapter VI.
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Eigenvalue for EKF and EnKF

10-14

10-1310-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
ig

en
va

lu
e

0 10 20 30 40 50 60 70 80 90 100110
Mode

EnKF ( m = 20 )   
EnKF ( m = 50 )   
EnKF ( m = 100 )  
EnKF ( m = 410 )  
EnKF ( m = 1000 ) 
EKF               

Figure 3.1. Eigenvalues of the analysis covariance matrix for EKF and EnKFs
(ensemble member: 20, 50, 100, 410 and 1000) on 00Z 31 January 1990.
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Eigenvector for Analysis Cov.
EKF vs EnKF 

(a) EnKF ( m = 20 )  (b) EnKF ( m = 50 )  
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Figure 3.2. First eigenvectors of the analysis covariance matrix for EKF and EnKFs
on 00Z 31 January 1990. (a) EnKF with 20 ensemble members, (b) EnKF with
50 ensemble members, (c) EnKF with 100 ensemble members, (d) EnKF with 410
ensemble members, (e) EnKF with 1000 ensemble members and (f) EKF.
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RMSEs and Spreads
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Figure 3.3. Time series of RMSEs (solid lines) against truth of the barotropic
expansion coefficient wi of the state variables (u, v, φ) and analysis ensemble spreads
(dashed lines) for EKF and EnKF for 1 month from 00Z 1 January 1990 to 00Z 31
January 1990 (0 of the horizontal axes corresponds to 00Z 1 January 1990). (a) EnKF
with 20 ensemble members, (b) EnKF with 50 ensemble members, (c) EnKF with
100 ensemble members, (d) EnKF with 410 ensemble members, (e) EnKF with 1000
ensemble members and (f) EKF. The observational error is about 2.25× 10−4.
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Barotropic Heigh ( m )
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Figure 3.4. Analysis fields (contour) and the differences against truth (shaded) of the
barotropic height (m) on 00Z 31 January 1990. (a) EnKF with 20 ensemble members,
(b) EnKF with 50 ensemble members, (c) EnKF with 100 ensemble members, (d)
EnKF with 410 ensemble members, (e) EnKF with 1000 ensemble members and (f)
EKF.

— 30 —



RMSE for EKF and EnKF
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Figure 3.6. Time series of RMSEs against truth of the barotropic expansion coef-
ficient wi of the state variables (u, v, φ) for LETKF and EnKF (member=50) for 1
month from 00Z 1 January 1990 to 00Z 31 January 1990 (0 of the horizontal axes
corresponds to 00Z 1 January 1990). The observational error is about 2.25× 10−4.
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CHAPTER IV

Applying the Local Ensemble Transform

Kalman Filter to the Nonhydrostatic

Icosahedral Atmospheric Model (NICAM)

4.1 Methodology of the NICAM-LETKF

In this study, data assimilation experiments with the NICAM-LETKF are per-

formed under the perfect model scenario. The forecast model used is the NICAM

mentioned in introduction. Its horizontal resolution is 224 km (Glevel-5) and the

number of vertical layers is 40. The prognostic variables are pressure, temperature,

horizontal and vertical wind components and mixing ratios of water vapor, cloud

water and rain water. In the NICAM, the horizontal wind is decomposed to three

elements. So, the number of the prognostic variables is 9. The model physics used in

this study are Louis’s surface layer (Louis 1979), Mellor and Yamada Level 2 (Mel-

lor and Yamada 1974), Arakawa and Schubert’s cumulus parameterization (Arakawa

and Schubert 1974, Arakawa 2004) and third-order Runge-Kutta method for time

integration.
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The control run for the truth is generated with an initial data by the JMA/GSM

operational analysis on 12Z 30 December 2006, and integrated until 12Z 22 January

2007. The synthetic observations are generated by adding prescribed observational

error to the truth. The error standard deviations are 1.0 hPa (pressure), 1.0 K (tem-

perature), 1.0 m/s (horizontal wind) and 0.5 g/kg (mixing ratio of water vapor). The

observations cover 10 % grid points of the entire horizontal 2-dimensional grid space

and cover about 3.3 % grid points of the entire 3-dimensional grid space uniformly.

In this study, a Gaussian-like fifth order polynomial function (Gaspari and Cohn

1999) is adopted for the horizontal and vertical localization, by multiplying the func-

tion to the diagonal elements of the inverse of the observational covariance matrix.

The localization scale is defined by the one standard deviation of the normal distri-

bution. The horizontal localization scale is 500 km, and the Gaussian-like function

drops to zero at about 1800 km from the analysis point. The vertical localization

scale in 30◦N–90◦N and 30◦S–90◦S is 4.0 grid points, and that in 20◦N–20◦S is 3.0

grid points. In the other region the vertical localization scale changes smoothly by a

linear interpolation. The Gaussian-like function drops to zero at about 10 grid points

to 15 grid points in the vertical. The NICAM-LETKF assimilation cycle is every 6

hours, and the period of the experimental assimilation is from 12Z 1 January 2007

to 12Z 22 January 2007. The ensemble size is fixed to 40, and the initial ensemble

members are computed from the JMA operational analysis integrated for 2 days by

the NICAM. The dates of the JMA operational analysis are chosen at random to

avoid the similar values.
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In this study, four experiments are implemented, and in all experiments the

multiplicative spread inflation is employed. The details of each experiment are sum-

marized in Table 1. In the first experiment (Ex. 1), the spread inflation parameter is

fixed temporally. In detail, the spread inflation is 1% in 30◦N–90◦N and 30◦S–90◦S,

and is 3% in 20◦N–20◦S. In the other region the spread inflation changes smoothly

by a linear interpolation. In the second experiment (Ex. 2), the spread inflation pa-

rameter is estimated adaptively, following the method shown in Miyoshi (2005) and

Miyoshi (2011). In Miyoshi (2005) and Miyshi (2011), an estimate of the covariance

inflation parameter ∆o can be obtained from

∆o =
trace(do−fd

>
o−f ) ◦R−1

trace(HPfH> ◦R−1) + trace(R ◦R−1)
− 1, (4.1)

where do−f is the difference between the observation and forecast ensemble mean, and

Pf , R and H denote the forecast error covariance, the observational error covariance

and the linear observational operator, respectively. The superscript >, the subscript

o and f denote the matrix transpose, observation and forecast, respectively. The

spread inflation parameter is obtained from the covariance inflation parameter. In

the third and fourth experiments (Ex. 3 and Ex. 4), not only the inflation parameter

but also the observational errors are estimated adaptively. The method of estimat-

ing the observational error is shown in Desroziers et al. (2005), and the method

for the covariance inflation parameter and the observational error is shown in Li et

al. (2009a). In Desroziers et al. (2005) and Li et al. (2009a), an estimate of the

observational error variance σ2
o can be obtained from

σ2
o = trace(do−ad

>
o−f )/p, (4.2)
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where do−a is the difference between the observation and analysis ensemble mean,

and p and subscript a denote the number of observations and analysis, respectively.

In this study, the estimation method is implemented for each observation variable. Li

et al. (2009a) estimated the inflation parameter and the observational error variance

adaptively at each analysis time step. However, if the number of observations is not

large enough, a large sampling error is introduced. Therefore, Miyoshi (2005) and

Li et al. (2009a) assumed that ∆o and σ2
o were observed, respectively, to avoid this

problem. They used a simple scalar KF approach, which usually uses the postprocess

model output. By using this KF approach, the past information is accumulated, and

the inflation parameter and observational error variance gradually converge to the

optimum values while still allowing for time variations. The KF estimation is often

ruined by an unrealistically large sampling error. So, to avoid this problem we impose

reasonably wide upper and lower limits in the observed inflation ∆o, e.g., 0.0 to 0.2,

before applying the KF approach. In Ex. 3 and Ex. 4, the initial specifications of

the observational errors are 3.0 and 0.1 times the true value, respectively, for each

variable. At each analysis time, we evaluate the analysis error using the RMSE

between the true state and the analysis ensemble mean and compute the ensemble

spread.
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Table 4.1. Configuration of each experiment.

inf. param. obs. error (init.)

Ex. 1 Constant (1–3 %) True (–)

Ex. 2 Adaptive True (–)

Ex. 3 Adaptive Adaptive (3.0 times)

Ex. 4 Adaptive Adaptive (0.1 times)

4.2 Results

Figure 4.1 shows the time series of the analysis RMSEs and ensemble spreads

of 500 hPa geopotential height and 850 hPa temperature for Ex. 2. In the early

period the RMSEs decrease with time. The RMSEs are larger than the ensemble

spreads. After about three days spin-up, the RMSEs become comparable to the

ensemble spreads. The RMSE and ensemble spread in the Tropics are larger than the

other regions. This result shows that the uncertainty in the Tropics is large in spite

of the perfect model experiments because the cumulus convection is active. In the

temperature field, the RMSE and ensemble spread in the Southern Hemisphere are

larger than that in the Northern Hemisphere. Such a tendency dominates in the lower

troposphere, and there is no clear difference between the Southern Hemisphere and

the Northern Hemisphere in the middle troposphere and above. This result implies

that the cause is in the land-ocean distribution because the RMSE and ensemble

spread are larger over the ocean, particularly in the temperature field. Moreover,

for the other elements, e.g., SLP (Sea Level Pressure), wind components and water
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vapor, the RMSEs are apparently smaller than the observational errors. For example,

the analysis RMSEs of SLP in the Northern Hemisphere, Southern Hemisphere, and

Tropics are about 0.2 hPa, 0.2 hPa and 0.3 hPa, respectively.

To see the horizontal distribution of the analysis errors, Fig. 4.2 illustrates the

temporally averaged analysis RMSE and ensemble spread of 500 hPa geopotential

height for Ex. 2, in which the inflation parameter is estimated and the observational

error is perfectly known. The shaded areas show the analysis RMSE or ensemble

spread, and the contours show 500 hPa geopotential height. As shown in both fields

in Fig. 4.2, the analysis error distribution is comparable to that of the ensemble

spread very much. Particularly the peaks of the RMSE correspond to those of the

ensemble spread. The pattern represents the area which indicates large uncertainty.

For example, in the Tropics the RMSE is very large along the ITCZ (The Intertropical

Convergence Zone) because of the active cumulus convection. Therefore, the ensemble

spread becomes large by the chaotic nature which originates by the uncertainty. The

result is consistent with that in Fig. 4.1. On the other hand, over the east part of the

North Pacific Ocean the westerly jet is meandering, and there is a ridge along the West

Coast. In the upstream of the ridge, the RMSE is large, where an extratropical cyclone

is developing in the surface. Moreover, in the area with large RMSE, the ensemble

spread is also large as the RMSE. Therefore, it is confirmed that the NICAM-LETKF

captures the characteristics of the regional analysis errors.

Figure 4.3 shows the time series of the analysis RMSEs of the 500 hPa zonal

wind in Exs. 1, 2, 3, and 4. In the early stage the error level of Ex. 2 is the smallest.
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Ten days after the beginning of the assimilation, however, a clear separation of the

analysis RMSEs among the experiments is not seen. In the Ex. 4 the long adjusting

period is necessary for the LETKF to converge. About ten days are needed so that

the Ex. 4 is adjusted by the NICAM-LETKF, but eventually the RMSE in the Ex.4

becomes comparable to other experiments. In the other variables, similar results are

obtained (not shown).

Figure 4.4 shows the adaptively estimated observational errors of pressure in the

lowest layer of the NICAM in Exs. 3 and 4. The experiments start from the wrong

observational error with 3.0 (Ex. 3) and 0.1 (Ex. 4) times the true value. In Ex. 3 the

estimated observational error gradually decreases by assimilating data iteratively, and

then the error converges to the true value. In Ex. 4 the estimated error becomes larger

than the initial value in the early period. Then, the error converges to the true value

such as in the case of the Ex. 3. About 18 days after the beginning of the assimilation,

both of the estimated observational errors already become very close to the true value

though the observational errors are not known. The estimated observational errors

are slightly larger than the truth even though the initial observational error is very

small in the case of the Ex. 4. Hence, it is confirmed that the algorithm which

estimates the observational error adaptively works very well. In the other variables,

similar results are obtained (not shown). As a result, we can get a good analysis by

estimating the observational errors adaptively though the errors are not known.

According to Figs. 4.3 and 4.4, it seems that the NICAM-LETKF has small

sensitivity to the observational errors because in the early assimilation period the

— 39 —



RMSE of the Ex. 3 is comparable to the RMSE of the Ex. 2 although the estimated

observational errors are overestimated. This result is discussed in chapter VI.

— 40 —



NICAM-LETKF
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Figure 4.1. Time series of the analysis RMSEs and ensemble spreads of 500 hPa
geopotential height (m) (top panel) and 850 hPa temperature (K) (bottom panel) for
the Ex. 2. Initial time is 12Z 1 Jan 2007. The red, blue, and yellow lines are for the
Northern Hemisphere (NH; 20◦N–90◦N), the Southern Hemisphere (SH; 20◦S–90◦S),
and Tropics (TR; 20◦N–20◦S), respectively.
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Figure 4.2. Spatial distributions of the analysis RMSEs (top panel) and ensemble
spreads (bottom panel) of 500 hPa zonal wind and 500 hPa geopotential height (con-
tour) for the Ex. 2, temporally averaged for 1 day from 00Z 21 January 2007 to 18Z
21 January 2007.
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Figure 4.3. Time series of the analysis RMSEs of 500 hPa zonal wind (m/s) for the
Exs. 1, 2, 3, and 4. The yellow, red, blue, and green lines are for the Exs. 1, 2, 3,
and 4, respectively. Initial time is 12Z 1 Jan 2007.
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Figure 4.4. Time series of adaptively estimated observational error of the pressure
at the lowest layer of the NICAM. The blue and green lines are for the Exs.3 and 4,
respectively. The true observational error is 1.0 hPa. Initial time is 12Z 1 Jan 2007.
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CHAPTER V

Multi-Scale Localization Approach

5.1 Dual-Localization Approach

We may limit the influence of observations within a narrower region than the

range that the observations should impact, particularly when the model resolution

is very high, since larger-scale structures than the localization scale are removed

due to tight localization for the high-resolution model. The optimal localization

scale depends on several factors including the model resolution and ensemble size;

the localization scale becomes generally smaller for higher-resolution models. Then,

Miyoshi and Kondo (2013) and Kondo et al. (2013) introduced the multi-localization

approach, and they mainly investigated the dual-localization approach. The essence

of the dual-localization approach is to find the analysis increments as a sum of the

small-scale and large-scale components. The full-resolution ensemble perturbations

and the reduced-resolution ensemble perturbations obtained by smoothing the full-

resolution perturbations are combined with small-scale and large-scale localizations,

respectively.

Figure 5.1 illustrates the raw increments computed from 20 ensemble members

using the LETKF (a) with T30 SPEEDY model and (b) with T21 SPEEDY model,
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assimilating the single-point observation at the star point. Figure 5.1(a) shows the

full-resolution increments and 5.1(b) shows the reduced-resolution increments. There

are some strong signals in the distance from the star point, which means that the

long-range error correlations from the star point at the center. The long-range error

correlations are likely to be sampling noise. Therefore, a distance-dependent localiza-

tion function is usually applied, and then the localized results are illustrated in Fig.

5.2 with a 1000-km localization scale. These analysis increments of (a) and (b) are

computed from the single-point observation only in the surrounding area. It is con-

sidered that they are more realistic analysis increments than Fig. 5.1. Figure 5.2(a) is

noisier structure, however, in Fig. 5.2(b) the high-frequency sampling error is filtered

out, and Fig. 5.2(b) will allow using broader localization without contamination.

Figure 5.3 illustrates the same analysis increments as Fig. 5.2, but with a 500-

km localization scale. This includes only shorter-range covariances. Figure 5.3(a) has

the finer structure near the observed location with higher-frequency components, but

Fig. 5.3(b) does not keep the finer structure.

This dual-localization approach is to merge the fine short-range structure (Fig.

5.3(a)) and broad long-range structure (Fig. 5.2(b)). The weighted mean of Figs.

5.3(a) and Fig. 5.2(b) will reduce the fine structure and the long-range signals. In

this study, we consider an alternative approach which uses the short-range structure of

5.3(a) and the only long-range component of 5.2(b). Then the short-range component

is taken out from 5.2(b). This component is obtained by subtracting the increment

with the 500-km localization with the smoothing perturbations (Fig. 5.3(b)) from
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the increment with the 1000-km localization using the smoothing perturbations (Fig.

5.2(b)), which gives the only long-range components (Fig. 5.4). Finally, by adding

short-range component (Fig. 5.3(a)) and the long-range component (Fig. 5.4), the

merged dual-scale increment (Fig. 5.5) is obtained. This contains the fine structure

near the observation and has the longer-range structure without high-frequency noise.

In this paper this dual-localization approach is derived based on the LETKF, but

the same idea may be applied to other EnKF implementations in a straightforward

manner. And this dual-localization approach formula is described as follow.

The smaller-scale, high-resolution component δXh is obtained by the full-resolution

forecast ensemble perturbations with a short-range localization scale (500-km local-

ization, Fig. 5.3(a)). The subscript h represents using high-resolution perturbations.

In the LETKF, δXh is given by

δXh = δXfP̃
a (

HδXf
)> (

ρ̃short ◦R−1
) (

yo −Hx̄f
)

+ δXf
[
(N − 1)P̃

a
]1/2

, (5.1)

where ◦ denotes the element-wise multiplication. Each column of the background

ensemble perturbation matrix δXf is composed of the difference between each en-

semble forecast and the ensemble mean x̄f , and the ensemble size is N . P̃
a
, H, R

and yo denote the analysis error covariance in ensemble space, the linear tangent ma-

trix of the observation operator, observation error covariance matrix (assumed to be

diagonal) and observation vector, respectively. In the LETKF we apply observation

localization ρ̃short to R−1 and weigh the observation error variances depending on the

distance from the analyzed grid point (Hunt et al. 2007; Miyoshi and Yamane 2007;
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Greybush et al. 2011).

The larger-scale, low-resolution component δXl is computed from reduced-resolution

forecast ensemble perturbations with a longer-range localization scale. δXl is com-

posed of δXl−long and δXl−short. The subscript l represents low-resolution perturba-

tions, followed by long (short) denoting a long-range (short-range) localization scale.

δXl−long (Fig. 5.2(b)) is obtained from δXf
l with longer-range localization:

δXl−long = δXf
l P̃

a

l−long
(
HδXf

l

)> (
ρ̃long ◦R−1

) (
yo −Hx̄f

)

+δXf
l

[
(N − 1)P̃

a

l−long
]1/2

, (5.2)

where the localization scale of ρ̃long is longer than that of ρ̃short. Although δXf
l is

obtained by applying a spatial low-pass filter (i.e., spatial smoothing) to δXf , x̄f is

not smoothed and is the same as that in Eq. (5.1). δXl−long includes a short-range

structure δXl−short, which needs to be removed. δXl−short (Fig. 5.3(b)) is obtained

from δXf
l with smaller localization scale:

δXl−short = δXf
l P̃

a

l−short
(
HδXf

l

)> (
ρ̃short ◦R−1

) (
yo −Hx̄f

)

+δXf
l

[
(N − 1)P̃

a

l−short
]1/2

, (5.3)

where ρ̃short is the same as that in Eq. (5.1).

The resulting multi-scale increment δX is obtained from Eqs. (5.1), (5.2) and

(5.3) and is shown in (Fig. 5.5). δX is computed by

δX = δXh + δXl−long − δXl−short. (5.4)

δXh (Fig. 5.3(a)) provides the short-range, small-scale structure, and δXl = δXl−long−
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δXl−short (Fig. 5.4) provides the long-range, large-scale structure. If the long and

short localization scales are the same, the dual-localization approach reduces to the

single localization approach. Although the dual-localization approach requires solv-

ing the LETKF analysis updates three times, usually that is not a large load since

the major part of LETKF computations is usually in the ensemble forecasting part,

which remains the same.

Miyoshi and Kondo (2013) obtained the smoothed ensemble perturbations δXf
l

by applying the spectral truncation in the spherical harmonics. In this study, we

apply the Lanczos filter (Lanczos 1956; Duchon 1979). Lanczos weight is given by

Lanczos weight(d) =





1 (d = 1)

sin(fcd)

πd

sin(πd/n)

πd/n
(0 < |d| < n)

0 (otherwise),

(5.5)

where d describes the distance from the center grid point. The Lanczos filter has

two parameters: resolution parameter n and critical frequency fc. In this study, n

is chosen to be 10, and fc is selected from 1/5, 1/8 and 1/11. The Lanczos filter

is applied to the longitude and latitude directions. Figure 5.6 shows the response

functions of the Lanczos filter and Fourier transform. The curve of Fourier transform

is an ideal response function with cut-off wave number 21. The three curves of

Lanczos filters are the smoothed response function with transition bands. The smaller

fc corresponds to more smoothing. The traditional single localization approach and

the dual-localization approach are called ”CTRL” and ”DLOC”, respectively, and

sometimes subscript F or L is added, corresponding to the Fourier transform (F) and
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Lanczos filter (L), respectively. Figure 5.7 illustrates similar analysis increments as

Fig. 5.5, but with the Lanczos filter. If we choose a stronger smoothing parameter,

δXl becomes smaller and smaller by cancelling out positive and negative values, and

the analysis increments become similar to those with single 500-km localization δXh

(Figs. 5.3(a) and 5.7(c)). This study compares the analysis accuracy among different

smoothing functions.

5.2 Experimental Settings

In this study, twin experiments with a T30/L7 (horizontal resolution up to 30

wave numbers and 7 vertical levels) atmospheric general circulation model (AGCM)

known as the SPEEDY model (Molteni 2003) are performed under the perfect model

scenario. This type of experiments is also known as the OSSE (observing system sim-

ulation experiment). The horizontal resolution of the SPEEDY model is about 420

km (3.75 degrees in longitude), and the prognostic variables are zonal and meridional

wind components (U, V), temperature (T), specific humidity (Q) and surface pressure

(Ps). The experimental settings follow Miyoshi and Kondo (2013) and Kondo et al.

(2013). Namely, the nature run starts at 0000 UTC 1 January 1982, and the observa-

tions are generated by adding uncorrelated white random numbers to the nature run.

The observation error standard deviations are 1.0 m s−1 for U and V, 1.0 K for T, 1.0

× 10−3 kg kg−1 for Q and 1.0 hPa for Ps. The observations are taken every 6 hours

at all 7 vertical levels at given horizontal stations of a radiosonde-like network, but

— 50 —



the observations of specific humidity and surface pressure are taken from the bottom

to the 4th level and only at the surface, respectively. The assimilation cycle is every

6 hour, and the period of the experiments is from 0000 UTC 1 January 1982 to 0000

UTC 1 February 1983. The ensemble size is fixed at 20, and the initial ensemble

members are chosen from the nature run in January 1984. All experiments are per-

formed with adaptive covariance inflation (Miyoshi 2011). The CTRL experiment

employs the traditional LETKF with 700-km horizontal and 0.1 ln p vertical local-

ization parameters. The other experiments employ the dual-localization approach

(DLOC) with different choices of smoothing functions and localization parameters.

DLOC F uses the spectral truncation at 21 wavenumbers, and DLOC L5 uses Lanc-

zos filter with fc = 1/5, and similarly to DLOC L8 and DLOC L11. The localization

parameters are chosen by 100-km increment from 300 km to 900 km for the short

localization, and from 600 km to 1300 km for the long localization. By definition, the

long localization parameter is always greater than the short localization parameter.

In order to investigate a statistical significance, four parallel experiments are imple-

mented using different observational noises with the same observation error standard

deviations.

5.3 Results

Figure 5.8 illustrates the results of the localization parameter survey for different

choices of the smoothing functions. Figure 5.8 indicates RMSE (Root Mean Square
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Error) of surface pressure, and the shaded area corresponds to the advantage of DLOC

over CTRL. DLOC F and DLOC L5 are very similar (Figs. 5.8 (a) and (b)), and

the smallest RMSE values are almost identical. Figures 5.8 (b), (c) and (d) show the

impact of the smoothing strength. As the degree of smoothing becomes stronger, the

optimal localization parameters shifts to larger scales, and the shaded area becomes

smaller. The smallest RMSE in Fig. 5.8 (c) is almost the same as that of Fig. 5.8

(b), but Fig. 5.8 (d) shows larger RMSE. Hereafter, DLOC L5 is further investigated

and is denoted simply as DLOC L.

Figure 5.9 is similar to Fig. 5.8, but for zonal wind, temperature and spe-

cific humidity. DLOC L outperforms CTRL with relatively wide choices of the two

localization parameters by about 400-km range, that is, 400-900 km for the short

localization parameter and 700-1100 km for the long localization parameter. Using

the longer localization parameter greater than 1200 km causes filter divergence. U

and Ps (Fig. 5.8 (b)) show a little more sensitivity to the localization parameters

than T and Q. The shapes of shaded area are similar except for Q. The positions of

minimum RMSE differ among different variables. Figures 5.8 and 5.9 suggest that the

best combination of short and long localization parameters be 600 km and 900 km.

A similar localization parameter survey is performed for DLOC F, and the optimal

localization parameters are found to be 500 km and 900 km (not shown).

Figure 5.10 shows time series of analysis RMSEs. It is confirmed that overall

advantage of dual localization (DLOC) over the manually-tuned single localization

(CTRL). After about 4-month run (May 1982 and later), DLOC shows very clear
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advantage, particularly for humidity. Figure 5.11 shows the spatial distribution of

analysis RMSEs and spreads of CTRL and DLOC for the surface pressure (Figs. 5.11

(a) and (b)) and specific humidity (Figs. 5.11 (c) and (d)). The analysis RMSE

patterns correspond to the spreads, and the RMSE of DLOC is smaller than that

of CTRL in the most areas, so it shows that the DLOC is worked appropriately. In

Fig. 5.11 (c; CTRL), the analysis spread is smaller than the analysis RMSE in the

some areas, especially over the Northern America. On the other hands, in Fig. 5.11

(d; DLOC), the analaysis spread corresponds to the analysis RMSE. So, the analysis

spread of CTRL is underestimated, and it is indecated that DLOC can estimate the

analysis spread and that the analysis spread of DLOC corresponds to the analysis

RMSE in specific humidity.

Figure 5.12 shows the horizontal power spectrums of the analysis error of zonal

wind at the 4th model level (～500 hPa). Here, the optimal localization parameters

are chosen. The analysis errors are computed from the difference between the nature

run and analysis, and have the most power around the horizontal wave numbers 10

to 20. By applying the dual-localization approach, the analysis errors become much

smaller in all wavenumbers, and the improvement was about 20 %. There is no

significant difference between DLOC F and DLOC L.

Figures 5.13 and 5.14 illustrate the improvements for horizontal and vertical

structure, respectively, and they greys out non-significant areas in which any one of

the four parallel experiments disagrees. In general, DLOC has advantages not only

over the ocean but also over the land. Over the ocean, it is probably considered
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that the DLOC can catch some more distant signals of observations than CTRL.

In fact, 900-km single localization gives more accurate analysis over the ocean than

CTRL, however, the 900-km single localization is still worse than DLOC. On the other

hands, over the land, 900-km localization gives less accurate analysis than CTRL, so

the overall analysis accuracy of 900-km localization is not better than CTRL.

To investigate the covariance structures of the dual-localization approach, a

3200 ensemble member experiment is also implemented. Figure 5.15 illustrates the

horizontal background error covariance maps of T at the 1st level. In the case of

20 ensemble members, the covariance has a lot of sampling errors even if using a

1000-km localization (Fig. 5.15(a)). By increasing the ensemble members up to 3200,

the sampling error is much smaller than 20 ensemble members (Figs. Fig. 5.15(b)).

In dual-localization approach with 20 ensemble members and 500-km and 1000-km

localizations, the covariance structure is more similar to 3200 ensemble members than

20 ensemble members with 1000-km localization (Fig. 5.15(c)).

Figure 5.16 illustrates the correlation maps of the background error for Q at the

1st level, using 20, 50, 100, 200, 400, 800, 1600 and 3200 ensemble members. The

sampling errors dominate and it is impossible to distinguish some important signals

and the sampling errors with 20 ensemble members. However, by increasing the

ensemble members up to 3200, the sampling errors are approximately deleted, and

it is confirmed to capture some important signals. The signals have wavy patterns

and extend in a westward direction. Figure 5.17 is similar to Fig. 5.16, but for Q

using 20 and 3200 ensemble members. The signals do not have a wavy pattern, and
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the direction is eastward. And the correlation structure is similar to PNA pattern

(Pacific/North American pattern; Wallace and Gutzler, 1981). Moreover, the scales

of signals are much larger than 1000-km localization scale.

Finally, the parallelization and computational time are mentioned. These tech-

niques are implemented in K computer. The acceleration rations of LETKF are

plotted in Fig. 5.18. If the parallelization ratio is 100 %, it is indicated a perfect ac-

celeration (black solid line). The 400 member LETKF is more efficient than the 99.80

% parallelization ratio, and 1600 and 3200 members LETKFs outperform the 99.99

% parallelization ratio. Tables 5.1, 5.2, 5.3 and 5.4 show the computation times of

LETKF by 12 nodes, 24 nodes, 48 nodes and 96 nodes, respectively. The assimilation

occupies most of the total computational time, and the eigenvalue decomposition of

analysis error covariance matrix (Eq. 2.25) occupies from 65 % to 85 % of the com-

putational time of assimilation (not shown). The computational time of assimilation

is proportional to about 7 times of the ensemble members and is proportional to 2

times of the number of nodes.
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(a) High-resolution (T30) (b) smoothed-resolution (T21)

Figure 5.1. Analysis increments of zonal wind (m s−1) at the 4th model level (～
500 hPa) from a single profile observation at the star point using the SPEEDY model
using (a) full-resolution (T30) ensemble perturbations without localization, (b) the
same as (a) but smoothed resolution (T21). (a) is adopted from Miyoshi and Kondo
(2013).
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(a) L = 1000 km with high-resolution (T30) (b) L = 1000 km with smoothed-resolution
(T21)

Figure 5.2. Analysis increments of zonal wind (m s−1) at the 4th model level (～500
hPa) from a single profile observation at the star point using the SPEEDY model using
(a) full-resolution (T30) ensemble perturbations with 1000-km localization scale, (b)
the same as (a) but smoothed resolution (T21). These are adopted from Miyoshi and
Kondo (2013).
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(a) L = 500 km with high-resolution (T30) (b) L = 500 km with smoothed-resolution
(T21)

Figure 5.3. Analysis increments of zonal wind (m s−1) at the 4th model level (～
500 hPa) from a single profile observation at the star point using the SPEEDY model
using (a) full-resolution (T30) ensemble perturbations with 500-km localization scale,
(b) the same as (a) but smoothed resolution (T21). These are adopted from Miyoshi
and Kondo (2013).
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Figure 5.4. Difference of increment between Fig. 5.2(b) (large localization scale)
and Fig. 5.3(b) (short localization scale). This is adopted from Miyoshi and Kondo
(2013).
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Figure 5.5. Dual-localization analysis increments of zonal wind (m s−1) at the 4th
model level (～500 hPa) from a single profile observation at the star point using the
SPEEDY model using . This is adopted from Miyoshi and Kondo (2013).
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Figure 5.6. Response functions of the Fourier transform (thin solid) and the Lanczos
filters with fc = 1/5 (thick solid), 1/8 (dashed) and 1/11 (dash-dotted).

— 61 —



(a) fc = 1/5 (b) fc = 1/8 (c) fc = 1/11

Figure 5.7. Similar to Fig. 5.5, but using the Lanczos filter with fc = (a) 1/5, (b)
1/8 and (c) 1/11.
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(d) DLOC L11

Figure 5.8. Analysis RMSEs of surface pressure (hPa) of dual localization with
various localization scale parameters, averaged for a year from 0000 UTC 1 February
1982 to 0000 UTC 1 February 1983, and using (a) T21 spectral truncation, (b) Lanczos
filter with fc = 1/5, (c) fc = 1/8 and (d) fc = 1/11. The shaded areas indicate
improvements of DLOC over CTRL whose RMSE is 0.586 hPa.
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(b) Temperature at the 2th
model level
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(c) Specific humidity at the low-
est model level

Figure 5.9. Similar to Fig. 5.8(b), but for (a) zonal wind (m s−1) at the 4th model
level, (b) temperature (K) at the second model level and (c) specific humidity (g
kg−1) at the lowest model level. The RMSEs of CTRL are 0.900 m s−1, 0.366 K and
0.258 g kg−1, respectively.
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(b) Temperature (K) at the 2nd model level
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(c) Specific humidity (g kg-1) at the lowest level
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(d) Surface pressure (hPa)

Figure 5.10. Time series of analysis RMSE using Lanczos filter (fc = 1/5) as a
smoothing function for (a) zonal wind (m s−1) at the 4th model level (～500 hPa),
(b) temperature (K) at the 2nd model level (～850 hPa), (c) specific humidity (g
kg−1) at the lowest level (～925 hPa), and (d) surface pressure (hPa). Black and red
curves indicate CTRL and DLOC experiments, respectively. Abscissa indicates the
month. — 65 —
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(d) Specific humidity (g kg-1) at
the lowest level of CTRL

Figure 5.11. Spatial distributions of 1-year-average analysis RMSE (top panel)
and Spread (bottom panel) for (a) surface pressure of CTRL, (b) surface pressure of
DLOC, (c) specific humidity of CTRL at the lowest level (～925 hPa) and (d) specific
humidity of DLOC at the lowest level (～925 hPa).

— 66 —



Horizontal Power Spectrum
U ( Z = 4 )

P
ow

er

Horizontal Wave Number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 5 10 15 20 25 30 35 40 45 50

CTRL

DLOC_F

DLOC_L

Figure 5.12. Horizontal power spectrum of the zonal wind analysis errors at the 4th
model level for CTRL (black), DLOC F (red) and DLOC L (blue).
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(a) Zonal wind at the 4th model level. (b) Temperature at the 2th model level.

(c) Specific humidity at the 1st model level. (d) Surface pressure.

Figure 5.13. Improvements (%) of 1-year-average analysis RMSE of DLOC over
CTRL for (a) zonal wind at the 4th model level (～500 hPa), (b) temperature (K) at
the 2nd model level (～850 hPa), (c) specific humidity at the lowest level (～925 hPa),
and (d) surface pressure. Red (blue) indicates advantage (disadvantage) of DLOC.

— 68 —



(a) Zonal wind (b) Temperature

(c) Specific humidity

Figure 5.14. Improvements (%) of 1-year-average analysis RMSE of DLOC over
CTRL for zonal-average vertical structure of (a) zonal wind, (b) temperature (K)
and (c) specific humidity. Red (blue) indicates advantage (disadvantage) of DLOC.
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(a) Ensemble size = 20 with a single local-
ization

(b) Ensemble size = 3200 with a single lo-
calization

(c) Ensemble size = 20 with a dual local-
ization (500 km and 1000 km)

Figure 5.15. Horizontal background error covariance (K2) maps of T at 1st level,
(a) with 1000-km localization scale (top) and without localization (bottom) using 20
members, (b) with 1000-km localization scale (top) and without localization (bottom)
using 3200 members and (c) with 500-km and 1000-km dual localization scales using
20 members.
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(a) Ensemble size = 20
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(b) Ensemble size = 50
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(c) Ensemble size = 100
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(d) Ensemble size = 200
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(e) Ensemble size = 400
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(f) Ensemble size = 800
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(g) Ensemble size = 1600
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(h) Ensemble size = 3200

Figure 5.16. Horizontal background error correlation maps of Q at the 4th model
level without localization, and using (a) ensemble size = 20, (b) ensemble size =
50, (c) ensemble size = 100, (d) ensemble size = 200, (e) ensemble size = 400, (f)
ensemble size = 800, (g) ensemble size = 1600 and (h) ensemble size = 3200.
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(a) Ensemble size = 20
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(b) Ensemble size = 3200

Figure 5.17. Horizontal background error correlation maps of Ps (a) with 1000-km
localization scale (top) and without localization (bottom) using 20 members, and (b)
with 1000-km localization scale (top) and without localization (bottom) using 3200
members.
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Figure 5.18. Acceleration ratios of LETKF with 400, 800, 1600 and 3200 ensemble
members (color solid lines). Theoretically estimated acceleration ratios for paral-
lelization are added (black lines).
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Members
Computational time (sec)

Initialize Read Obs. Read Guess Assimilation Write Anal. Total

100 2.00 0.19 0.65 2.95 (-) 0.47 6.40

200 1.04 0.36 1.17 14.76 (5.00) 0.69 18.15

400 0.07 0.68 2.19 90.10 (6.10) 1.63 94.80

800 1.06 1.19 4.16 666.20 (7.39) 3.27 675.99

1600 1.23 2.59 9.13 4,452.88 (6.68) 7.15 4,473.73

3200 0.97 9.37 16.26 31,645.46 (7.11) 13.38 31,711.64

Table 5.1. Computational time of LETKF by 12 nodes and 96 processors. () indi-
cates the magnification of computational time when the ensemble members increases
twice.

Members
Computational time (sec)

Initialize Read Obs. Read Guess Assimilation Write Anal. Total

200 0.10 0.31 1.18 7.43 (-) 0.74 10.58

400 0.55 0.58 3.40 46.28 (6.23) 2.41 53.33

800 2.24 1.18 7.56 331.23 (7.16) 3.15 345.50

1600 2.05 2.57 13.31 2,232.83 (6.74) 6.47 2,257.40

3200 1.04 9.25 22.14 15,806.53 (7.08) 14.04 15,853.32

Table 5.2. Computational time of LETKF by 24 nodes and 192 processors. () indi-
cates the magnification of computational time when the ensemble members increases
twice.

— 74 —



Members
Computational time (sec)

Initialize Read Obs. Read Guess Assimilation Write Anal. Total

400 2.19 0.62 6.45 23.12 (-) 6.24 38.74

800 2.15 1.28 10.51 167.01 (7.22) 3.01 184.07

1600 1.13 2.53 18.79 1,129.69 (6.76) 6.11 1,158.43

3200 0.35 8.27 48.02 7,991.79 (7.07) 12.96 8,061.66

Table 5.3. Computational time of LETKF by 48 nodes and 384 processors. () indi-
cates the magnification of computational time when the ensemble members increases
twice.

Members
Computational time (sec)

Initialize Read Obs. Read Guess Assimilation Write Anal. Total

400 1.73 0.60 15.42 11.81 (-) 1.86 31.60

800 0.33 1.23 25.50 84.30 (7.14) 3.41 114.90

1600 2.30 2.32 39.50 563.44 (6.68) 6.81 614.20

3200 1.68 8.39 66.03 4,049.02 (7.19) 14.28 4,139.70

Table 5.4. Computational time of LETKF by 96 nodes and 768 processors. () indi-
cates the magnification of computational time when the ensemble members increases
twice.

— 75 —



CHAPTER VI

Concluding Summary

In this study, a new type of advanced data assimilation method is developed

based on the EnKF method for very high-resolution models in view of future data

assimilation in numerical weather predictions. First, in order to investigate the per-

formances of EnKF, the EKF and EnKF are compared. Next, the LETKF is applied

to the NICAM and the NICAM-LEKTF is constructed for the future cloud-resolving

data assimilation. In the high resolution data assimilation, however, the region of

available observations may be limited since larger-scale structures than localization

scales are removed due to tight localization for the high-resolution model. For this

reason, a new method of multi-scale localization technique is developed in this study

in order to apply the LETKF to the high-resolution models. In this chapter, the

results of this study are summarized as follows:

Comparison of the EKF and EnKF

In this study the accuracy of the full-rank EKF and EnKF is investigated under

the perfect model scenario with the barotropic S-model. The accuracies of the EKF

and EnKF are evaluated using the analysis error covariance matrix, RMSE and the

ensemble spread.
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First, the analysis error covariance matrices of the EKF an EnKF are compared

in the spectral space by the eigenvalue decomposition of the variance of the analysis

error. The magnitude of the 100th eigenvalue for the EKF is about 1/105 of that of

the first eigenvalue, suggesting that the covariance matrix is almost degenerate. It

is found that the eigenvalue spectrum of the EnKF is smaller than that of the EKF,

probably due to the assumption of the model linearization in the EKF. However, the

most dominant error pattern represented by the EOF-1 of the analysis covariance

matrix of EnKF has converged to the EKF when the ensemble member is increased

to 50 or 100 and above. The spatial pattern represents the characteristics of the

parameterized baroclinic instability which yields the largest error growth. Another

rapid error growth is detected over the Arctic, and the result is probably the nonlinear

interactions, but it should be investigated as a future work.

Next, the RMSEs and the ensemble spreads are compared for the EKF and

EnKF. The RMSE is comparable to the ensemble spread for most of the experiments

except for 20 members of the EnKF, although the experiment for the EnKF with 20

members does not result in filter divergence. The EnKF requires 100 ensemble mem-

bers to accurately estimate the analysis error. The daily variations of the ensemble

spreads are smaller than that of the RMSE. The former represents the characteristics

of the model which does not strongly depend on the observation, whereas the latter

is influenced by the introduced random noise in the time series. The accuracy of the

EKF and the EnKFs is examined by the analysis error fields. The error in the anal-

ysis fields of the EnKFs is very similar to that of the EKF. The more the number of
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members increases, the smaller the differences between the EKF and EnKF become.

The results are confirmed from the comparison of the RMSEs for the EKF and the

EnKF.

In order to investigate the statistical confidence of the result, we have repeated

the same experiments for 10 cases in different seasons and different years. The mag-

nitude of the analysis RMSE of the EKF is smaller than that of the EnKF with 50

ensemble members and is larger than that of the EnKF with 100 ensemble members.

The RMSEs of the EnKF with 100, 410 and 1000 members are also smaller than that

of the EKF, and the RMSE of the EnKF with 410 members is almost the same as

that of 1000 members.

Here, the performance of the EKF and EnKF is discussed. According to the

results of eigenvalue and RMSE of EKF and EnKF, the EnKF outperforms the EKF.

In Zang and Malanotte-Rizzoli (2003), in the strongly nonlinear case the EnKF out-

performs the reduced-rank EKF, and in the weakly nonlinear case the performances

of the reduced-rank EKF and EnKF are similar. And in the barotropic S-model

the error growth is relatively small because the dynamical instability of the model is

weak (Tanaka and Nohara 2001). In this study, the difference of settings between the

EKF and EnKF is whether to require the model linearization or not. Namely, the

EnKF can directly treat the non-linear model although the EKF requires the model

linearization, and the forecast error covariance of the EKF has some errors involved

by the model linearization. So, the result is likely considered as the linearization of

non-linear model. However, it is non-trivial that the EnKF outperforms the EKF.
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The non-linear model may also have the negative effect on the performance of EnKF.

In addition, we should also consider that the observation network influences to the

performance. Moreover, it should be noted that the barotropic S-model may have

a problem for the assimilation of the real observations due to the small internal in-

stability. The small spread would not capture the true trajectory by the significant

model errors.

Finally, the influence of the localization of the EnKF in the physical space is

investigated for the barotropic S-model. In the physical space, the analysis errors

of the EnKF become smaller than the observational errors. So the EnKF works

appropriately. It seems that the analysis RMSEs of the EnKF have converged for

the member size more than 20. This result agrees with that by Szunyogh et al.

(2005). However, the comparison of the EnKF in the physical space and EnKF in the

spectral space indicates that the RMSEs are larger in the physical space than that in

the spectral space.

As the first reason, it is considered that the localization influences to the anal-

ysis field. Because the degree of freedom of the barotropic S-model is very small in

the spectral space, the EnKF can assimilate all the observations even for the small

ensemble size. On the other hand, the degree of the freedom is much larger in the

physical space than in the spectral space for the barotropic S-model. For the phys-

ical space, it is necessary to apply the localization in order to reduce the spurious

covariance among distant points due to the sampling errors, so that the filter will not

diverge. In this study the influence of the localization is examined by applying the
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EnKF to the physical space of the barotropic S-model. It is found that the EnKF can

capture the analysis errors of regional scale such as synoptic disturbances. However,

it cannot capture the analysis errors of the global scale such as teleconnection or

zonally symmetric errors.

As the second reason, it is considered that the observations in the physical space

have the local information and involve the retrieved errors. It is not guaranteed that

the observational errors in physical space are equivalent to those in spectral space.

On the other hand, in the spectral space the EnKF assimilates the observations whose

elements are model variables. It may be important to note that the information of

observations is very different between the spectral space and the physical space with

the localization. In the spectral space, all state variables are assimilated as observa-

tions, whereas in the physical space, only few observations around the analysis point

are assimilated. For this reason, the analysis results contain different number of ob-

servations and also different information about observations assuming no correlation

between observational variables. Therefore, a careful comparison may be needed to

understand the different analysis results. It is necessary to investigate the influence of

the localization, the discrepancy of the assimilated observations and error correlation

scale of the barotropic S-model in detail.

As is demonstrated in this study, it is found that the EnKF has a good per-

formance compared to the full-rank EKF with the barotropic S-model in which the

dynamic instability is weak. Therefore it is concluded that the EnKF converge to

the EKF for the practical assimilation in the spectral space under the perfect model
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scenario with the barotropic S-model, using 100 ensemble members.

NICAM-LETKF

In this study the LETKF is applied to the nonhydrostatic and realistic global

atmospheric model called NICAM, and the data assimilation system is called the

NICAM-LETKF. In addition, an algorithm which estimates not only the inflation

parameter but also the observational errors adaptively is introduced to the NICAM-

LETKF. We conducted three kinds of experiments to investigate the feasibility and

stability of the NICAM-LETKF under the perfect model scenario: 1) the inflation

parameter is fixed temporally (Ex. 1), 2) the inflation parameter is adaptively es-

timated, and the observational errors levels are perfectly specified (Ex. 2), and 3)

the inflation parameter and the observational errors are adaptively estimated at a

time (Exs. 3 and 4). It is confirmed that the LETKF works appropriately for the

nonhydrostatic global model, although the model with the horizontal resolution of

224 km behaves hydrostatically.

First, it is confirmed that the NICAM-LETKF works stably without diverging,

and the analysis errors become smaller than the observational errors in all variables.

In addition, the magnitude and distribution of the analysis RMSEs are temporally

and spatially comparable to those of the analysis ensemble spreads. The RMSEs

are large in the area with large uncertainty such as the ITCZ or the developing

extratropical cyclone. In such areas, each ensemble member spreads rapidly due to
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the strong chaotic nature, resulting in the large ensemble spread. According to the

above result, the inflation parameter is tuned optimally in the each grid point, so

it is not necessary to tune the inflation parameter manually. These results indicate

that the NICAM-LETKF combined with the adaptive estimation of the inflation

parameter works appropriately and stably, and the NICAM-LETKF can capture the

true analysis errors.

Second, in the case where the observational errors are perfectly known, and the

inflation parameter is adaptively estimated (Ex. 2), the NICAM-LETKF converges

fastest. On the other hand, in the case where the inflation parameter and observa-

tional errors are both estimated adaptively and the initial observational errors are 0.1

times the true value (Ex. 4), the NICAM-LETKF converges the most slowly. Since

the observational errors are generally not perfectly known, the results are quite rea-

sonable. In the early assimilation period, the accuracy of the analysis mainly depends

on the inflation parameter and observational errors because the number of assimilated

observations is insufficient. It may be important to note that the observational errors

are overestimated by the present formulation, regardless of the magnitude of the ini-

tial observational errors. The observational error variance is obtained from Eq. 4.2.

In the Eq. 4.2, it is assume that there is no correlation between the analysis error

δxa and the forecast error δxf . Actually, however, it is considered that there is a lit-

tle correlation between the analysis error and the forecast error because the analysis

fields and forecast field is similar in the area which a number of observations are a few

or the ensemble spread is small. So, it is considered that the estimated observational
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errors are overestimated. In the latter half of the analysis period, there is no clear

difference among the analysis RMSEs of the 4 experiments. It is demonstrated that

the observational errors sufficiently converge to the true values, and the inflation pa-

rameter is tuned optimally because the NICAM-LETKF assimilates sufficient number

of observations.

We discuss about the sensitivity of the NICAM-LETKF to the observational

error settings. The accuracies of the Exs. 2 and 3 are the same level in early pe-

riod though the observational errors are overestimated in the Ex. 3. Therefore, it

seems that the NICAM-LETKF has a small sensitivity to them. The adaptive esti-

mation algorithm might have some advantages in the case such as assimilating real

observations. The inflation parameter can be estimated appropriately only when the

observational errors are adequately known. In addition, when the observation instru-

ment is renewed and its observational error is changed, the LETKF can estimate its

error by the adaptive estimation algorithm. Moreover, Li et al. (2009a) mentioned

the possibility of the estimation of the error cross-correlations in such as satellite

data.

In the assimilation with the real observations, the method which estimates the

inflation parameter does not work properly because the observational errors are not

perfectly known. Li et al. (2009a) reported the algorithm to adaptively estimate

both the inflation parameter and the observational errors using the simple Lorenz-96

system and the SPEEDY model, which is based on the primitive equations. In this

study, we demonstrated that the algorithm works appropriately even for the realis-
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tic nonhydrostatic global model of NICAM. However, it is not clarified whether the

NICAM-LETKF and the adaptive estimation algorithm works stably in the experi-

ments with the real observations. It is suggested that this approach will suffer more in

the real observations because of the model errors and the different sources of observa-

tions of similar variables. In Zhang et al. (2006), they tested the variance relaxation

algorithm and reported that it is very effective and prevents filter divergence, preserv-

ing the structure of the local ensemble perturbations due to the error growth. These

algorithms are useful to draw information from the observations as much as possible

even for the experiments with the real observations. If the adaptive estimations of

inflation and observation error are applied in the assimilation with the real obser-

vations, the model bias should be considered. The model bias has a bad influence

upon the estimation algorithm of observation error. Li et al. (2009b) reported the

model bias estimation algorithm (Dee and da Silva 1998) with the SPEEDY model, in

which the model bias and state are separately estimated. In Dee and da Silva (1998),

however, they assumed that the model error covariance has the same structure with

the forecast error covariance because the model error covariance is unknown. This

assumption is very strong, and it may be possible to relax the assumption using the

adaptively estimated inflation parameter, but it should be the subject of the future

work.
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Multi-Scale Localization Approach

The dual-localization approach is proposed in Miyoshi and Kondo (2013), Kondo

et al. (2013) and this study. The dual-localization approach analyzes the high-

resolution and low-resolution components of analysis increments separately, using

two localization scales and spatial smoothing. The high-resolution component is com-

puted from the full-resolution perturbations and has a detailed structure of the error

covariance by using a narrow localization. The low-resolution component is computed

from the reduced-resolution perturbations and has a structure of the smoothed error

covariance by using a wider localization. The error covariance computed from the

low-resolution component has less sampling noise than the traditional single localiza-

tion, and the influence of observations can reach to a longer distance. Therefore, the

dual-localization approach is able to assimilate more observations efficiently through a

larger localization and has a good performance more than the traditional single local-

ization approach. These results are confirmed by comparing the covariance structures

with 20 and 3200 ensemble members. The covariance structure of dual-localization

approach is more similar to the covariance structure with 3200 ensemble members

than the traditional single localization approach, using only 20 ensemble members.

So, it is concluded that the dual-localization approach is able to capture larger scale

structure removing the sampling errors. Therefore, this dual-localization approach

(or multi-localization approach) is an important technique for the high-resolution

models, in particular for the cloud-resolving data assimilation. On the other hands,

it is confirmed that the scale of background error correlation are larger than the lo-
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calization scale by increasing the ensemble member up to 3200. Some of the error

correlations have wavy pattern from Pacific to Eurasia or PNA pattern, and the di-

rection of strong correlation is very different in each variables. If we are able to treat

the localization well, it is possible that the analysis errors are more improved.

This study also aims to investigate parameter sensitivities of the dual-localization

approach. The two localization scale parameters and the choice of the smoothing

function are the tuning parameters of the dual-localization method. The results

showed robust performance of the dual-localization approach. Namely, dual localiza-

tion outperformed traditional single localization with relatively wide choices of the

two localization scale parameters by about 400-km range. In addition, two different

smoothing functions are compared. Also, two smoothing functions, the spectral trun-

cation as in Miyoshi and Kondo (2013) and the Lanczos filter with different smoothing

strengths are investigated. The results showed no significant difference between the

spectral truncation and Lanczos filter, and they gave essentially identical analysis

performance if their smoothing strengths are similar. These findings are important

in the sense that we may avoid a fine tuning of the parameters of dual localization.

Since the Lanczos filter is simpler to implement and faster to compute, the Lanczos

filter may be advantageous in implementing with higher-resolution regional models.

Results also showed that the performance of the dual-localization approach strongly

depends on the smoothing strength. With stronger smoothing, larger localization

parameters give better results, although the minimum RMSE becomes slightly larger

with stronger smoothing. Therefore, it is confirmed that DLOC outperformed CTRL
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by about 20 % at all scales with the best combination of localization parameters and

smoothing strength.

Furthermore, the dual-localization approach is extended to the triple-localization

approach (not shown). As the result, the performance of triple-localization approach

is almost the same as the dual-localization approach, although the choice of the largest

localization scale is larger. And the triple-localization approach requires solving the

LETKF analysis equations five times. So, it is concluded that the triple-localization

approach is ineffective in the case of SPEEDY model because the horizontal resolu-

tion of the SPEEDY model is coarse. However, if the other higher-resolution models

are used, it would be necessary to apply the triple-localization or multi-localization

approach. If the observation stations are reduced in an effort to cut costs and are

replaced by remote sensing data, it is difficult to assimilate larger scale information

than the localization scale. Then, it is also considered that the multi-localization

approach is one of the techniques to solve the problem in the high-resolution data

assimilation.

Finally, the computational performance of LETKF is mentioned. The paral-

lelization ratio of LETKF is more efficient than 99.99 % by increasing the ensemble

size up to 1600 and 3200. To accelerate the computing speed, it is necessary to im-

prove the eigenvalue decomposition of analysis error covariance matrix in ensemble

space because the eigenvalue decomposition occupies most of the computational time.

This result almost agrees with that by Miyoshi and Yamane (2007).
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Future Subjects

In this study, we have confirmed that the EnKF converges to the EKF with

low-resolution atmospheric model. We have concluded that the application of the

multi-scale localization methods to the EnKF may construct the scientific basis of

the future data assimilation for the very high-resolution models. It is desired to

develop a new data assimilation method for the very high-resolution cloud-resolving

global model such as NICAM. The multi-scale localization methods developed in this

study can be applied to such high-resolution global and regional models in a future,

using a high-performance parallel computing system.
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