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ABSTRACT

In this study, the spectral energetics of the atmospheric circulation was investi-
gated using analytical vertical structure functions. The analytical vertical structure

functions can be obtained by assuming a constant static stability parameter.

According to the result of the analysis of the energy spectrum using the ana-
lytical vertical structure functions, it is found that the energy spectrum indicates a
clear peak in the middle vertical modes, and the spectrum decreases monotonically
at the higher order vertical modes. It is found in this study that the energy spectrum
in the vertical wavenumber domain obeys —3 power of the nondimensional vertical
wavenumber p,,,. The energy interactions for lower order vertical modes are consis-
tent with that by Tanaka and Kung (1988). However, it is found from the analysis
of the energy interactions that there is another energy source region in the higher
order vertical modes in the zonal field. It is also found from the energy flux analysis
in the vertical wavenumber domain that the atmospheric energy is converted from

baroclinic component to barotropic component.

In this study, characteristics of the energy slope for the barotropic component
of the atmosphere are also examined in the framework of the 3D normal mode de-
composition. The energy slope of E = mc? was derived by Tanaka et al. (2004) based
on the criterion of the Rossby wave breaking, where FE is total energy, c¢ is a phase

speed of Rossby wave, and m is a total mass per unit area. The wave breaking occurs
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when the local meridional gradient of potential vorticity ¢ is negative, i.e., dq/dy < 0,
somewhere in the domain. If the spectrum obeys the ¢? law, it should obey the —4
power of the zonal wavenumber n, because the phase speed c is related to the total
wavenumber by ¢ = —(3/k? and if we assume the isotropy for zonal wind u and the
meridional wind v over the range of synoptic to short waves, the energy spectrum can

be expressed as a function of n instead of k.

The theoretical inference of the energy slope is examined using JRA-25 data.
According to the result of the analysis, the spectral slope agrees quite well with the —4
power law of the zonal wavenumber for the barotropic component of the atmosphere.
It is, however, confirmed that the spectrum obeys the —3 power law as in previous
studies for the baroclinic atmosphere. It is also found that the barotropic energy
spectrum obeys the saturation theory where energy cascades up, but it does not obey

where energy cascades down.

According to the energetics in the vertical wavenumber domain using the an-
alytical vertical structure functions, it is found that the available potential energy
injected in the baroclinic modes converted to the kinetic energy of the same vertical
scale without interacting within the vertical modes. The baroclinic kinetic energy
interacts within baroclinic modes, and then they are transformed to the barotropic

mode.
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CHAPTER 1

INTRODUCTION

The atmospheric energetics has been investigated since the atmospheric energy
flow was discussed by Lorenz (1954) using the concept of the available potential en-
ergy. Lorenz (1954) studied the energetics of atmospheric general circulation with
dividing the atmospheric data into zonal and eddy components. Saltzman (1957)
expanded the energy equations into the zonal wavenumber domain and showed that
the kinetic energy of the cyclone-scale waves is transformed into both the planetary
waves and the short waves in terms of nonlinear wave-wave interactions. Kasahara
(1976) showed a computational scheme of normal mode functions which is called
Hough functions in the barotropic atmosphere. The normal modes are the solutions
of the linearized primitive equations over a sphere and have been applied extensively
to nonlinear normal mode initialization techniques. He applied the Hough functions
to an orthonormal basis for the energy decomposition in the meridional mode do-
main. Since Kasahara and Puri (1981) obtained orthonormal eigensolutions to the
vertical structure equation, it became possible to expand the atmospheric data into
the three-dimensional harmonics of the eigensolutions. Ferdinand (1981) expanded
the atmospheric data with the vertical structure functions derived by generated with

empirical orthogonal function (EOF) and Bessel functions.



Tanaka (1985) and Tanaka and Kung (1988) studied the atmospheric energy
spectrum and interactions expanding the atmospheric data to the three-dimensional
normal mode functions. The vertical structure functions used by them were obtained
by solving the vertical structure equation with a finite difference method. The nu-
merical vertical structure functions have quite large aliasing for higher order vertical
modes indicating largest amplitudes near the sea level despite that the analytical

solutions indicate the largest amplitudes always in the upper atmosphere (see Sasaki

and Chang 1985).

The barotropic-baroclinic interactions have been studied by many researchers
(Wiin-Nielsen 1962; Nielsen and Drake 1965; Smagorinsky 1963). Wiin-Nielsen (1962)
investigated the kinetic energy interactions between the vertical shear flow and the
vertical mean flow. It was shown by Wiin-Nielsen for an analysis averaged over
the Northern Hemisphere that the atmospheric available potential energy is released
through the baroclinic flow, which acts as a catalyst, to support the motion of
barotropic flow. According to their analysis, the energy conversion between shear
flow and mean flow is about 30 percent of the conversion between the available po-

tential energy and the shear flow kinetic energy.

The energy spectrum is characterized by —3 power law with respect to the hor-
izontal wavenumber k over the synoptic to sub-synoptic scales (Wiin-Nielsen 1967;
Boer and Shepherd 1983; Nastrom et al. 1984; Shepherd 1987). Using dimensional
analysis, Kraichnan (1967) predicted a k=2 power law for 2D, isotropic and homoge-

neous turbulence in a downscale enstrophy cascading inertial subrange on the short-
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wave side of the scale of energy injection. Basdevant et al. (1981) showed the k=4
spectral slope in enstrophy cascading subrange by the barotropic nondivergent model
with forcing. It was shown by Tung and Orland (2003) that not only enstrophy
but also energy cascade down from synoptic to meso scales. The down scale energy
cascade is responsible for a k=%/® spectrum on the short-wave side where the energy

cascade exceeds the enstrophy cascade.

Tung and Orland (2003) demonstrated that the energy injected at the synoptic
scale cascades up to planetary waves and zonal motions where another dissipation
exists. Contrasted to the k=3 law over the synoptic to subsynoptic scales, there is no
appropriate theory to describe the spectral characteristics at synoptic to planetary
scales because of the existence of the energy source due to baroclinic instability. Welch
and Tung (1998) argued that the theory of nonlinear baroclinic adjustment (Stone
1978) is responsible to determine the spectrum over the energy source range. They
introduced a breaking criterion proposed by Garcia (1991) to determine the upper
bound in meridional heat flux by the disturbances. According to the criterion, a
Rossby wave breaks down when a local meridional gradient of the potential vorticity

is negative, i.e., dq/0y < 0, somewhere in the domain.

The spectral characteristic for the barotropic component in the phase speed do-
main was argued by Tanaka et al. (2004), by using the criterion of the dq/dy < 0.
Using 3D normal mode energetics, they investigated the characteristics of the energy
spectrum for the barotropic component (Tanaka 1985). Divergence of the shallow

water system is contained mostly in the gravity modes with large phase speed ¢, but
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it is negligible for the Rossby modes with small ¢ because the divergence is propor-
tional to eigenfrequency o. Therefore, the non-divergent quasi-geostrophic model is
sufficient to represent the Rossby wave breaking for the barotropic component. They
derived that the energy spectrum is proportional to ¢? and also the barotropic energy
spectrum of the general circulation E can be represented as £ = mc?. They confirmed

that the theoretical inference of the slope agrees quite well with the observation.

The purposes of this study are to investigate the energetics of the atmospheric
general circulation in the vertical wavenumber domain using the analytical vertical
structure function, the characteristics of the energy slope in the barotropic atmo-
sphere, and the energetics based on the 3D normal mode decomposition. Chapter
IT describes the methodology of this study including primitive equations, vertical
structure functions, 3D normal mode functions, kinetic and available potential en-
ergy equations. Chapter III describes the data used in this study. The results of this
study in Chapter IV are divided in three parts. First, the result of the energetics
analysis in the vertical wavenumber domain is presented. Second, the characteris-
tics of the energy slope in the barotropic atmosphere are described (Terasaki and
Tanaka 2007a). Third, the energetics based on the 3D normal mode decomposition
are described (Terasaki and Tanaka 2007b). Discussion and conclusions are given in

Chapters V and VI, respectively.



CHAPTER 11

METHODOLOGY

2.1 Primitive Equation

The governing equations used in this study are the primitive equations: equation

of motions, thermodynamic energy equation, hydrostatic equation, equation of state,

and law of mass conservation. A system of primitive equations is constituted with

a spherical coordinate of longitude A, latitude #, nondimensional pressure o = p/p;

(ps = 1000 hPa), and time ¢, where py is constant surface pressure:

ou ) 1 0¢ Ou  tand
E—ZQsmﬁfij acosea——V-Vu—w%—l— uv + F,
ov ) 1 0¢ ov tan 6
E—FQQsm@u—l—EW——V-VU—wa—O— - uu + F,,
Oc, T dc, T
BT +V. Ve, T +w % = wpsa + @,
1 Ou n 1 Ovcosf n Ow _0
acos) O\ acosf 00 oo
psoa = RT),
9% __o
g ps’

(2.1)

(2.2)
(2.3)
(2.4)
(2.5)

(2.6)

where u and v are zonal and meridional wind speed, w is vertical p - velocity divided

by constant surface pressure p,, ¢ is geopotential, T is air temperature, a is radius
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of the earth, €2 is the angular speed of the earth’s rotation, ¢, is the specific heat at

constant pressure, « is specific volume, and R is a gas constant, respectively.

In order to obtain the conservation law of the available potential energy, we
modify the thermodynamic energy equation. Dividing the air temperature 7' into
the global mean at each pressure level and the departure from the global mean (7" =

To + T"), and applying Eqs.(2.5) and (2.6) to Eq.(2.3):

o +V-VT’+w(aT . )w(ﬁ—RTO):Q. (2.7)

ot do ocy do ac, p

The third term of the left hand side in Eq. (2.7) means the adiabatic change of the
temperature deviation. Here, the temperature deviation is negligible compared to the

global mean temperature:

8( o2 a¢/> U2V.Va¢/ _ wo 0 (U 8¢/>_w:@’ (2.8)

ot _Rv do _R7 do 78_]) R do ey
where the static stability parameter is (Tanaka 1985)

_RL, _dT,
S do

v (2.9)

The prognostic equation of geopotential can be obtained by differentiating Eq.

(2.8) with respect to nondimensional pressure o, and applying the law of mass con-

servation:
i B 0 o? 0¢ N 1 Ou N 1 Ouvcost
ot 0o Ry Oo acos® O\  acos 00
0 | o? op  wo O [ o 0¢ 0 [ Qo
. — — — . 2.1
do R’yv v80+ v 80<R 80)]+80<cp’y (2.10)




From Egs. (2.1), (2.2) and (2.10), using a matrix notation, these primitive equations

may be written as

U
Maa—t+LU:B+C+F, (2.11)
where
T
1 0 0
M=]po 1 0 : (2.13)
5 o2 9
0 0 —%’Y—R%
. 19
0 —2Qsin 0 By
L=1 20sin0 0 %% ) (2.14)
9 A( )cosb
aC(l)SG N a cos 000 0
—V-Vu—w%%—%uv
B = —V-Vv—wg—g—%uu , (2.15)
0
0
C = 0 , (2.16)




Fy

F = F, . (2.17)

o (o
0o (c;,’y)

The left-hand side of Eq. (2.11) represents linear terms with matrix operators

M and L and the dependent variable vector U. The matrix M is referred to as a mass
matrix which is nonsingular and positive definite under a proper boundary conditions.
The right-hand side represents a nonlinear term vector B and C and a diabatic term
vector F, which includes the zonal F, and meridional F, components of frictional

forces and a diabatic heating rate Q).

If we assume a resting atmosphere and the terms more than second order as
negligible, we can derive the vertical structure equation and horizontal structure

equation as follows, by the separation of variables:

d dG,,
o (02 Io ): AmGm, (2.18)
(YrrleXm) Hnlm = Z-O'TnlmI{nlm, (219)

where G, is the vertical structure function, the subscript m is the vertical mode
number, A, = ;;—ZL, a =v/Ts, ps (=1000 hPa) and T (=300 K) are surface pressure
and surface temperature of the reference state. or,;,, is the eigenfrequency of the

Laplace’s tidal equation. It should be noticed to distinguish between nondimensional

pressure o and or The scaling matrices should be defined for each vertical index as:

X = diag(\/ ghum, \/ Ghom, Ghim), (2.20)
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Yy, = diag(29/ghm, 207/ ghm, 29), (2.21)

where diag represents diagonal matrix and the entries v/ gh,, is a phase speed of gravity
waves in shallow water, associated with the equivalent height h,, for the vertical mode

m.



2.2 Vertical Structure Functions

The vertical structure functions which are the basis functions in the vertical
direction can be obtained by solving the vertical structure equation. The vertical

structure equation can be obtained by assuming that the atmospheric motion is adi-

abatic and at rest (z = v = ¢ = 0), and neglecting the second order and more
terms.
d o dGp,
—%<0 - ) = MG, for e<o <1, (2.22)
dG,,
o = 0, at o=k, (2.23)
dG,,
o +aG,, = 0, at o=1. (2.24)

According to Eq. (2.9), the static stability parameter  is a function of mean tempera-
ture for the reference state on the nondimensional pressure o, so the vertical structure
equation can only be solved numerically. Figure 2.1 (a)-(b) show the vertical profiles
of the numerical vertical structure functions by the finite difference method using the
global mean climate temperature of JRA-25. Zagar et al. (submitted to Monthly
Weather Review) also got the similar vertical structure functions which have a large
aliasing in the higher vertical modes, because of solving the vertical structure equa-
tion numerically. The vertical mode m = 0 is called the barotropic mode because
the values of the mode is approximately constant with no node in the vertical. The
vertical mode m = 1 has one node in the vertical and m = 2 has two nodes and so on,
and they are called baroclinic modes. These vertical structure functions of the lower

order vertical modes have a right structure showing the largest amplitudes in the



upper atmosphere (Fig. 2.1a). However, the vertical structure functions for higher
order vertical modes of m=17 to 22 (Fig. 2.1b) show quite large amplitudes near the
sea level with almost zero values in the upper atmosphere, despite that the analyti-

cal solutions are known to have the largest amplitudes in the upper atmosphere (see

Sasaki and Chang 1985).

In this study, we can get the analytical vertical structure functions by assuming
that the static stability parameter v is a constant. Since v is a constant, the vertical
structure equation becomes so-called Euler equation. Applied to a rigid top boundary
condition at ¢ = ¢, the problem is reduced to the regular boundary value problem of
Sturm-Liouville type. In this study the top of the atmosphere is assumed at ¢ = 0.001

(p =1 hPa).

Under this geometric configuration, we can solve the Euler equation as a se-
ries solution (see William and Richard, 2005), and the infinite series of the vertical

structure functions are represented as follows:

Go(O’) = 0100b10+0200b20, (225)

Gu(o) = J_%{C’lmcos(,umlna)+Cgmsin(,umlna)}, (2.26)

1 1 /1
by, — —_—_ 7 bom = —— — [, = — — A |, 2.27
1m 5 + tm 2 B % Hm, | 4 m| ( )

where the eigenvalues )\, are obtained by solving the eigenvalue problem of Eq. (2.22),
and the equivalent height h,, and corresponding vertical scale of each vertical mode
are listed in Table 2.1. In this study, u,, is defined as a vertical wavenumber, which

has no dimension.



(@)
Numerical Vertical Structure Function

Vertical Mode (0 - 5)

| ‘ ——+ 100
6 ]
5 | -
[ 101
—
4 g
n’ e
3 3
E S
B 2
1 3 ] @
S
| - o
l\ [ 102
2 ] \\“'-._
vl -
ol
V-
\l
lI m=0
1 7] " m=1 --------
m=2 - — —
m=3
m=4 oo
m=5 ------ i
0 T T T T T ‘ 103

-20 -15 -10 -5 0 5 10 15 20
Value of the vertical structure function

Figure 2.1. The vertical profiles of the numerical vertical structure functions for (a)

m=0—>5and (b) m =17 — 22.



(b)
Numerical Vertical Structure Function

Vertical Mode (17 - 22)

10°
6
] i
'_101
<
4 o
- e
D— N
o o
z
1 3— 9
i o
'_102
2 -
1 -
0 [ 103
-5 0 5

Value of the vertical structure function

Figure 2.1. Continued.



(&
Analytical Vertical Structure Function

Vertical Mode (0 - 5)

| l l | - 100
6 ]
> [
[ 101
<
47 o
n’ e
3 S
= S
s 2
1 3 . 9
i (al
[ 102
2 ]
m=0
1 ] m=1 --------
m=2 - — —
m=3
m=4 oo
m=5 ------ i
0 T T T T T ‘ 103

-20 -15 -10 -5 0 5 10 15 20
Value of the vertical structure function

Figure 2.2. The vertical profiles of the analytical vertical structure functions for (a)

m=0—>5and (b) m =17 — 22.



(b)

Analytical Vertical Structure Function

Vertical Mode (17 - 22)

—

-20

| | | |
-15  -10 -5 0 5
Value of the vertical structure function

20

100

[ 101

[ 102

- 103

Pressure (hPa)



Table 2.1. Vertical mode number, equivalent height (m), vertical wavenumber and
vertical wavelength (km) of the analytical vertical structure functions used in this
study.

Equivalent Vertical Vertical
Vertical mode height h,,(m) wavenumber pu,, wavelength (km)
0 9726.6 -0 -gd
1 1864.8 0 0.4709 O 106.75 0 0O
2 800.2 [ 0.9223 1 54.500 0
3 412.20 1.37390 36.59 0 0
4 245.71 1.8266 [ 27.5200
) 161.8 0 2.28010 22.0500
6 114.1 0 2.73390 18.390 0
7 84.6 O 3.1880 U 157700
8 65.2 1 3.6423 O 13.800 01
9 51.80 4.0966 U 12.2700
10 42.00 4.5511 0 11.0400
11 34.80 5.0056 U 10.04 00
12 29.30 5.4601 0 92100
13 25.00 5.9147 0 8.5000
14 21.60 6.3694 [ 7.8900
15 18.8 10 6.8240 O 73704
16 16.6 U 7.27870 6.91 00
17 14.70 7.7333 1 6.50 0O O
18 13.10 8.1880 6.140 0
19 11.80 8.6427 [ 5.8200
20 10.6 U 9.0974 0 5.5300
21 9.6 U 9.5521 01 5.26 00
22 8.8U 10.0069 U 5.0200




2.3 3D Normal Mode Functions

The 3-D normal mode functions are given by a tensor product of vertical struc-
ture functions (vertical normal modes, G,,,) and Hough harmonics (horizontal normal
modes, Hyim) as W = Gy Hpp. 1t is known from Tanaka (1985) that they form a
complete set and satisfy an orthonormality condition under an inner product < , >

defined as:

—7/2

1 1 pr/2 2w
< L, Wiy >= 7= / / / Wi - 113, cosOdAdOdo
21 Jo 0

5nn’5ll’5mm’7 (228)

where the asterisk denotes the complex conjugate, the symbols d;; is the Kronecker’s

delta, and the surface pressure p, is treated as a constant near the earth’s surface.

In order to obtain a system of spectral primitive equations, we expand the vector

U and F' in 3-D normal mode functions in a resting atmosphere, I1,,;,, (X, 0, p):

U 0,0,t) = Wi () X T (A, 6, 0), (2.29)
nlm

F(\0,0,t) = fuim()YoILum(X, 0, 0). (2.30)
nlm

Here, the dimensionless expansion coefficients wy,, (t) and fuu,(t) are the functions
of time alone. The subscripts represent zonal wavenumbers n, meridional index [,

and vertical index m. They are truncated at N, L, and M, respectively.

Using the orthonormal condition (2.28) of the 3-D normal mode functions, the

expansion coefficients of the state variables wy,,, and external forcings f,;, in (2.29)



and (2.30) may be computed by the set of inverse Fourier transforms:

Woim =< U(X, 0, 0,1), anlﬂnlm(k,e,a) >,

fnlm =< F(/\,@,O', t), Yn:lHnlm()\agaU) > (231)

Applied to the same inner product for (2.11), the weak form of the primitive

equation becomes

ou
< MW +LU~N—F, Y, 'y, >=0. (2.32)

Substituting (2.29) and (2.30) into (2.32), rearranging the time-dependent variables,
and evaluating the remaining terms, we obtain a system of 3-D spectral primitive

equations in terms of the spectral expansion coefficients:

dwi . . .
o + lopiw; = —1 %;m-jkijk +fi, 1=1,2,3, .. (2.33)

where 7 is a dimensionless time scaled by (2Q)~! and ryj is the interaction coeffi-
cients for nonlinear wave-wave interactions. The triple subscripts are shortened for
simplicity as Wy, = w;. There should be no confusion in the use of ¢ for a subscript

even though it is used for the imaginary unit.

As seen in Tanaka et al. (2004), the ratio of the nonlinear term to the linear
term is referred to as a spherical Rhines ratio R;, which characterizes the turbulence
regime R; > 1, and the wave regime R; < 1, and the scale where R; = 1 is defined as

the Rhines scale C'g in this study:

3 Tijk W, W
R, = |ng Jkg k| (2.34)

|0Tiwi|




In order to derive (2.33) from (2.32), we first show the following relation for the

linear terms.

oU dw; . .
<M—+LU, Ynfl—[nlm >= e +iorw;, 1=1,2,3, ... (2.35)
ot dr

The vertical differential operator M may be replaced by its eigenvalue based on the

relation of the vertical structure equation (2.18):

1

ML, = diag(1,1, —
iag( a

)1, (2.36)
By substituting (2.29) in (2.35), using the relation in (2.19) and (2.36), we obtain

dw:
Y <20y ML, > %Jr < VLG, I >
J

= I + torw;, (2.37)

which completes the proof of (2.35).

The proof for the external forcing F' in (2.32) to be transformed to f; in (2.33)

is straightforward by the relation (2.28).

Finally, we derive the specific form of the nonlinear interaction coefficients 7,
in (2.33). As noted before, the 3-D normal mode function is given by the tensor
products of G,, and H,;, as Il,;, = HpmG., in which the Hough harmonics are
given by the tensor products of the meridional normal modes (Hough vector functions)
and longitudinal normal modes (complex-valued trigonometric functions): H,, =
(Unims —1Vpim, anm)Tei”A. The computational method of the Hough vector functions

(Unirms —®™Vipim, Zim)T are detailed by Swartrauver and Kasahara (1985), and that



of the vertical normal mode G,, by Kasahara (1984). We assume that those basis

functions are already available.

By taking the inner products of the nonlinear term N and the 3-D normal mode

functions, we can prove the following relation for the nonlinear interaction coefficients:

<N, Yy M >= =i Y rijpwjwy,  i=1,2,3,... (2.38)
ik

The running indices i, j, k represent combinations of the 3-D wavenumbers. We
need to distinguish them respectively as n;l;m;, n;lym;, and nglymy. Likewise, the
equivalent heights and vertical structure functions are also distinguished similar way
with the subscripts of i, j, k. Substituting (2.16) and (2.21) into (2.38), the inner

product to be computed becomes:

1 1 pr/2 2w
<N, Y7L > = —// / X
21 Jo —n/2J0

T
1 —in; A _1/. _  ,0u tan
N U; Gie™™ V-Vu—wgr + 22w
X m (iV;) Gie~ ™ V- -Vou— wg_g _ %uu cos BdAdfdo.
1 —im A 0 2 99’ 0 o9’
& Z,Ge ooV V(5 50) T wogr (55 50)

(2.39)

It is recognized that the nonlinear terms are at most the second order nonlinearity of
the state variables. Using (2.29) we substitute the following expansion of the state

variables in the nonlinear terms of (2.39):
u Vahi U
o | = Zw Sl (=iv;) | Gie™™ (2.40)
¢’ gh; Zi



The vertical p-velocity w may be expanded as the next form based on the continuity

equation:

The vertical integral in (2.41) can be replaced by the first order derivative derived

from the integral of (2.18) as:

7 gh; szi
Gido = — i 2.42
/0 TR do (242)

Moreover, the second order vertical derivative in (2.39) can be replaced by the first

order derivative derived from (2.18) as:

“do Ry do Ry do | ghi

(2.43)

With those preparations, the final form of the computation for the nonlinear inter-
action coefficients is summarized as the volume integral of the triple products of the

normal mode functions:

<N, leni > = Zj > ok WiWk % fol fjﬁz 027r
T
U; P28 4 tan0Vy) —PLE RUL U;
Vi Py(%Y% 4+ tan0U,) —P9k PV v
Zi P31z —P —PZ | \0;Z;
et (Znitni A cos fdAdOdo. (2.44)

Here, the triple products of the vertical structure functions are combined with the
scaling parameters as:

P = VO GGG,



Vghkgh; 2~ dG; dGy,
P2 Vghi R~y g GZ do do?

vV 9h;j v/ 9hjghi dG,;
Py = LGiG Gy — L2 52, 405 dG

2Qa 2Qa Ry 1 do do

— . ghi ;v v dGr | ghi o~y dGj
Py = GGGy + RWUGZG] k4 RyJG% G,

h; dG,;
(9 — 1) 502G (2.45)

which completes the description of the real-valued nonlinear interaction coefficients
Tijk, represented by the volume integral in (2.44). The analytical derivative of the

vertical structure function is available as from Eqgs. (2.25) and (2.26).

As shown in (2.44), the nonlinear interactions are non-zero only when the zonal
wavenumbers satisfy the relation n; = n; +ny. In (2.44), there are many first deriva-
tives of the normal modes which are obtainable analytically when these are evaluated
in terms of a series expansion with the Associated Legendre functions. Hence, the
computations for r;;; are all analytical except for the volume integrals by means of
the Gaussian quadrature which is exact under the specified truncations of the Legen-
dre polynomials. Tt is worth noting that the spectral primitive equation (2.33) is as
accurate as the original one in (2.11) with approximately 1% in error for the dynamics

part.

The energy of the normal mode is defined as the square of the absolute value of
the complex expansion coefficient w,,;,,, multiplied by a dimensional factor chosen so

that the energy is expressed in J/m?:

1

EOlm = Zpshm|w01m|2a (246)
1

Enlm = Epshm|wnlm|2~ (247)



In order to obtain the energy balance equations for normal modes, Eqs. (2.46)
and (2.47) are differentiated with respect to time 7. Substituting (2.33) into the time

derivatives of w,;,,, we obtain finally:

dEd’:m = Buim + Crtm + Do, (2.48)
where
Brim = PsQhun (Wi bnim + Waimbpim ), (2.49)
Cim = Ps U (W), Crtim + Wit ) (2.50)
Do, = psQh (Wi, i, + Woim iy ) - (2.51)

According to (2.48), the time change of the energy is caused by the three terms which
appear in the right hand side of (2.48). B, and Cy,, are respectively associated with
the nonlinear mode-mode interactions of kinetic and available potential energies, and

D, represents an energy source and sink due to the diabatic process and dissipation.



2.4 Energetics in the Vertical Wavenumber Do-
main

2.4.1 Vertical expansion of primitive equation

In this study, the energetics of the atmospheric general circulation is analyzed
in the vertical spectral domain. The kinetic energy equation in the vertical spectral
domain can be obtained by expanding the equation of motions (Eqgs. 2.1 and 2.2) using
the vertical structure functions and multiplying the wind vector. Also the available
potential energy equation can be obtained by expanding Eq. (2.10) using vertical
structure functions. Expanding the primitive equations by the vertical structure
functions and applying the boundary conditions (Eqs. 2.23 and 2.24), the primitive

equations in the vertical spectral domain are represented as follows:

a[]m nm n nm n t 0
Qa, - E L Ul 8U + i ‘/l aU + Tln’leUn - — T'lnmUan
acosf oA a

ot a 060
1 0A,,
- — X,,.(2.52
+ Vi acosf O\ m(2:52)
OV, Tlnm oV, Tl < OV tand
—_— = — n’mQ n - nm n
ot Zn[aCOSQUl (32 * a K 00 T V i U1l
1 0A,,
—fU,, — — - Y., (2.
FUn = — 20 = Vo (2:5)



1 0A4,, g 1 0A, 1. 0A,
_— = —_ 271051 U _V
Zeralnm{acose “on T a o

ln

g
+ Z R_,Y(raln’m’ + /\nrlnm’)QlAn
l,n

1 oU, 1 0V, tan @

acos® 0N  a OO Vin
1

b (Hp+ S Horgmm), 9.54
i (3 Huon) (2.54)

1 oU, tan @ 1 0V, B
acosd 0N a Vi + a 00 + ; Lot =0, (2.55)

O

g Tn’mAn == 5 2.56
Srot= a

where U, V, Q, A, and « are the vertical expansion coefficients of horizontal wind
speeds u and v, vertical p-velocity w, geopotential ¢, and specific volume «, respec-
tively. The subscripts [,n,and m are the vertical mode number. In Egs (2.52) - (2.56),

r is an integration of the triple or double products of the vertical structure function

G-
1
Tinm = / GG, G, do, (2.57)
Pim = / e aai " Gndo, (2.58)
Tortmim = / 2 aail aai " Gdo, (2.59)
Toln'm!/ = /51 oG aain aaGam do, (2.60)
P = ElGlGn%da, (2.61)
Tonm = / 108(; "G ndo, (2.62)
Toim = /61 88((;7" Gpdo. (2.63)



Since ¢ is a nondimensional pressure, these nonlinear coefficients r become

nondimensional. The nonlinear coefficients r can be derived analytically by using

the boundary conditions, because these are the double or triple products of the ver-

tical structure functions G.

Tlnm

Tin'm

To2l'n'm

Toln'm/

Tlnm/

Oil Cjn Ckm

bit + bjn + bgm + 1.0

Cil Cjn Ck’m bjn

(1.0 — cbirtbimtbim),

bii + bjn, + b,

Cil Cjn Ckmbjn bil

bit + bjn + b + 1.0

Oilcjnokmbkmbjn (10 B Ebil+bjn+bkm)

bii + bjn, + b,

Cil Cj n Okm bkm

1.0 — Ebil+bjn+bkm )
by + bjn + b ( )

(1.0 _ Ebil+bjn+bk7n)

Y

(10 . Ebil+bjn+bkm+1-0)

Y

Y

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)



2.4.2 Kinetic energy equation

The kinetic energy per unit area is described as follows:

1 2 2
Ds u® 4 v
K=t [ 2T~ 4 2.69

9/6 2 (2.69)

where K is a kinetic energy, and the units of K are J/m?. Expanding u and v with
the vertical structure functions and using the orthonormality of the vertical structure

functions,

K = % ! % {Z UG Z U,G, + Z VoG Z VnGnl do,
m n . m n

_ % D UnUn ;r ViV / G,.Gndo,

Ps Uz +v?
R o

= > Knm, (2.70)

where

(2.71)

and K, is the kinetic energy of each vertical mode. Differentiating Eq. (2.71) with
respect to time ¢, kinetic energy equation in the vertical wavenumber domain can be

obtained,



= ()
= o3 e (v G v )
+”% (Umvl% + VW aa‘g” >— ta;le P (UmUan - valUn)
i (UleUn . valvn)}
b L 04w ps Ly OAm (2.72)

g acosf " O g a 00

In this kinetic energy equation, the first to fourth terms of the right hand side show
the kinetic energy interactions among baroclinic-baroclinic and barotropic-baroclinic
components, the fifth and sixth terms show the generation of the kinetic energy, which
is converted from available potential energy, and last term shows the dissipation of

the kinetic energy, respectively.



2.4.3 Available potential energy equation

Available potential energy is represented using the geopotential ¢’ as follows:

1 2 7\ 2
Ps o ¢
P== . 2.

g J. 2Ry ( Jo ) do (2.73)

Applying the chain rule to the right hand side in Eq. (2.73), expanding the geopo-

tential deviation ¢’ with the vertical structure functions, and

1 2 / / 2 /
p o D5 1 0 (o gb' e ¢ 0 ([ o° 0¢ do.
g J. 2 80 Oo 2 90 \ Ry 0o

2 2
2 0 ( o° 0G,
2Ry o 80 ZZAA / " do (R7 Jdo >da,
2
N G
= SR ¢ 60 ZZA A / o —" do,
a¢’

2
P
= > + E P, 2.74

2Rvg & do ( )

where

Ps 2

P, =
2%

(2.75)

where ¢/, denotes the surface geopotential. P is available potential energy and P, is
the available potential energy of each vertical mode, and the unit is J/m?. Differenti-
ating Eq. (2.75) with respect to time ¢, we can obtain the available potential energy

equation:

8Pm . Ds aAm
o ¢h, " Ot

(2.76)



Substituting Eq. (2.54) to Eq. (2.76), we can obtain the available potential energy

equation in the vertical spectral domain:

0P, Anm 0A, A, o 0A,
ot _; g Ry r02l,”m[aCOSGUl ™ a K 89]

Ds
gR

ps Un 0An +p5V 0A,
g acosf O\ g a 00

Ds
+—= m m + Ton'miln 2.77
Cpy < Z ) ( )

——(Totnm' + AnTinm' ) AU Ay,
n

where the first two lines show the available potential energy interactions within the
baroclinic-baroclinic and barotropic-baroclinic components of the atmosphere, and
the third line shows the conversion to the same scale of the kinetic energy, and the
last line shows the generation of the available potential energy or dissipation due to
the radiative cooling. In this study, the last term is evaluated as a residual from the

other terms.



2.4.4 Global energy budget equations

In order to obtain the energy budget equations, we summarize the kinetic energy

and available potential energy equations.

8?: = —M(m) + L(m) + C(m) = D(m), (2.78)
8;? - iM(W +C(0) = D(0), (2.79)
aa% = R(m)+5(m) = C(m) + G(m), (2.80)
aa? - iw:l R(m) — C(0) + G(0). (2.81)

Eqgs. (2.78) - (2.81) are the energy budget equations for the baroclinic kinetic en-
ergy, the barotropic kinetic energy, the baroclinic available potential energy, and the
barotropic available potential energy, respectively. The details about each term in
these equations are described in Table 2.2. The atmospheric energy flows in the

vertical spectral domain can be examined by calculating these terms.
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CHAPTER III
DATA

In this study, JRA-25 (Japanese Re-Analysis 25 years) and JCDAS (JMA Cli-
mate Data Assimilation System) (Onogi et al. 2007) are used. JRA-25 is the first
reanalysis in Japan conducted by JMA and CRIEPI (Central Research Institute of
Electric Power Industry). The reanalysis period is from January 1979 to December
2004. The global model resolution is T106L40 (the model top is 0.4 hPa). JCDAS
is the real-time reanalysis, which is taken over the same system as JRA-25 and the
data assimilation cycle is extended up to the present. The data used in this study are
four-times daily (00, 06, 12, and 18 UTC) JRA-25 and JCDAS (Onogi et al. 2007).
The data contain meteorological variables of horizontal wind u, v, vertical p-velocity,
temperature, and geopotential ¢, defined at every 2.5° longitude by 2.5° latitude grid
points over 23 mandatory vertical levels from 1000 to 0.4 hPa. The atmospheric data
at 0.4 hPa doesn’t use, because the boundary condition for top of the atmosphere is
set to 1.0 hPa. The data are interpolated on the 46 Gaussian vertical levels in the

log (p/ps) coordinate by cubic spline method.



CHAPTER IV
RESULTS

4.1 Energetics in the Vertical Wavenumber Do-
main

In this section, the results of the energetics analysis in the vertical wavenumber
domain are introduced. The energy interactions in the vertical wavenumber domain
can be investigated by expanding the primitive equation with the vertical structure
functions. Also, the energy flow between the barotropic and baroclinic motion can

be examined by summing up the energetics terms of all baroclinic modes.



4.1.1 Annual mean energetics

Figure 4.1 shows energy flow of kinetic energy and available potential energy
between barotropic and baroclinic component. The energy source of the atmospheric
general circulation is basically only the solar heating. It is injected as baroclinic avail-
able potential energy by the differential heating between equator and polar regions,
and its magnitude is 2.28 W/m?2. The baroclinic conversion, which is the energy con-
version from available potential energy to kinetic energy by the baroclinic instability,
is 2.10 W/m?. A part of this baroclinic kinetic energy is dissipated by the viscosity or
friction, and the amount of the dissipation is 1.07 W/m?2. Another part of baroclinic
kinetic energy is transformed to the barotropic motion. Finally, the barotropic kinetic

energy is dissipated by the viscosity or friction.

Figure 4.2 shows the kinetic energy and available potential energy flows in the
vertical wavenumber domain. The similar analysis in the zonal wavenumber domain,
which the Fourier expansion is used for basis function, is performed by Saltzman
(1985) and Tanaka and Kung (1988). It is found in this study that the generation
of the baroclinic available potential energy is widely distributed to the higher order
vertical modes, while the maximum injection is at the lower order vertical modes
around m = 4. The largest energy source is 0.53 W/m? in the vertical mode m = 4.
The sum of the energy injection from the vertical modes m = 2 to 8 is 2.08 W/m?.
The barotropic available potential energy actually should be zero if the barotropic

mode means strictly vertical mean. But the vertical structure function of vertical



mode m = 0 doesn’t have a constant value, so the available potential energy of
the barotropic mode has a nonzero value. It is found that the interactions of the
available potential energy between baroclinic-baroclinic and barotropic-baroclinic are
very small compared to those of the kinetic energy. The baroclinic available potential
energy is directly converted to the same scale of the kinetic energy with interacting
little among them. The energy conversion of each vertical mode is mostly same
with the energy injection of corresponding vertical mode. Most of the baroclinic
conversions have positive values except for the barotropic mode (m = 0) and the first
baroclinic modes (m = 1). It is found that the baroclinic kinetic energy interacts
within baroclinic modes, and then they are transformed to the barotropic mode. The
energy interactions in higher order vertical modes have a zigzag distribution. This is
caused by the artificial rigid upper boundary where the vertical structure function in

upper atmosphere has a large amplitude.
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Figure 4.1. The kinetic and available potential energy cycle boxes for the barotropic
and baroclinic components of the Northern Hemispheric atmosphere. The units of
the energy are 10°J/m?, and those of the interactions term are W/m?.
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Figure 4.2. The energy flow diagram of the atmospheric general circulation in the
vertical spectral domain. The data used in this figure are the entire period of JRA-25
and JCDAS. The units of the energy are 103J/m?, and those of the interactions term
are 1072W /m?.



4.1.2 Seasonal mean energetics

The seasonal differences of the energy spectrum and energy interactions are
also analyzed. The energetics terms of the barotropic and baroclinic components
are listed in Table 4.1 at each season in Northern and Southern Hemispheres. The
baroclinic available potential energy Py is very large and similar amount of energy
in the winter hemisphere, whose amount is 4.884 x 10% J/m? and 4.769 x 10° J/m?
in Northern and Southern Hemispheres, respectively. In summer hemisphere, the
baroclinic available potential energy have minimum value compared to every season.
The value of the baroclinic conversion in winter hemisphere has also largest value
in all seasons. The barotropic-baroclinic interactions of kinetic energy have similar
values in Northern Hemisphere through the year. However in Southern Hemisphere,

they differ by seasons and the those in winter have a very small value, 0.52 W/m? .

The magnitude of the kinetic energy is influenced by the strength of the jet
stream. The kinetic energy in the Southern Hemisphere becomes larger than that in
the Northern Hemisphere, because of the difference of the strength of the jet stream
due to the topography. The jet stream becomes strong in the winter hemisphere, and
weak in the summer hemisphere. The barotropic kinetic energy in DJF in Northern
Hemisphere (1.217 x 10° J/m?) is about three times large as the baroclinic kinetic
energy (0.386 x 105 J/m?). The ratios of the barotropic and baroclinic kinetic ener-
gies (K/K)y) are about 0.70 and 0.50 in the Northern and Southern Hemispheres,

respectively, except the summer hemisphere. In summer hemisphere, the ratio be-



comes larger, which means that the baroclinicity becomes stronger. Especially in the
summer in the Northern Hemisphere, the ratio reaches 1.03, the baroclinic kinetic

energy becomes stronger than the barotropic kinetic energy.

Figures 4.3 (a)-(d) show the same category of Fig. 4.1, but for the December,
January and February (DJF), March, April and May (MAM), June, July and August
(JJA), and September, October and November (SON), respectively. The available
potential energies for m = 4 in MAM and DJF are 1.051 x 10° J/m? and 1.219 x 10°
J/m?, respectively. On the other hand, the available potential energies for m = 4 in
JJA and SON are 0.61 x 10° J/m? and 0.857 x 10° J/m?, respectively. The interactions
of the available potential energy and the baroclinic conversion have almost the same
values in every season. The baroclinic-baroclinic interactions of the kinetic energy
vary with the seasons, especially in the lower order vertical modes. The kinetic energy
for m = 4 receives the kinetic energy from baroclinic-baroclinic interactions, and gives
it to the barotropic mode, in every season. This is caused by the barotropization of the
tropospheric jet induced by the baroclinic instability. The kinetic energy for m = 2
also receives it from baroclinic-baroclinic interactions, and gives it to the barotropic

mode except for DJF, despite of having a local minimum kinetic energy.
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Figure 4.3. As in Fig. 4.2 except for (a) DJF, (b) MAM, (c) JJA, (d) SON.
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Figure 4.3. Continued.
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4.1.3 Horizontal distribution

Kinetic energy of the atmosphere is mostly included in the tropospheric jet
region. Chen and Yen (1983) pointed out that a three-jet structure emerges in the
winter circulation in the Northern Hemisphere. These jets appear over the east coast

of both Asia and North America, and over North Africa.

Figure 4.4 shows the kinetic energy distributions of the barotropic and baroclinic
components in the Northern Hemisphere. The atmospheric energy is mostly included
in the mid-latitude jet region. The energy peak of the baroclinic mode is located
somewhat in the west of the barotropic peak. The amount of the energy peak of the
three jet regions are listed in the Table 4.2. The Asian jet is the strongest in these
three jets, and the amounts of the barotropic and baroclinic modes are 6.2 x 10°
J/m? and 3.1 x 10% J/m?, respectively. The other two jets over North America and
North Africa are weaker than the jet over Asia. The amounts of barotropic energy
over American and African jets are 3.9 x 106 J/m? and 2.8 x 10° J/m?, respectively.
The ratios of the barotropic kinetic energy of the North African jet and Asian jet for
the total energy are 62% and 67%, respectively. On the other hand, the ratio of the
barotropic kinetic energy of the North American jet for the total energy reaches 80%.
According to this analysis, it is found that the North American jet has the strongest

barotropy in these three jets.

Figure 4.5 shows the kinetic energy distributions of baroclinic modes from m =1

to m =8. The vertical mode m =1 has a specific distribution, which is an energy



peak around the polar region. This distribution corresponds to the polar vortex in the
stratosphere. The energy of the Asian jet of the baroclinic mode is mostly included
in vertical mode m =4, and the maximum value of the Asian jet is 9 x 105 J/m?.
The baroclinic energy of the Asian jet is distributed around vertical mode m =4, the
energy for m =1, m =3, and m =5 is 4 x 10° J/m? 8 x 10° J/m? and 5 x 10°
J/m?, respectively. About 85% of the Asian jet energy for baroclinic mode can be

explained by the vertical modes m =1, 3, 4, and 5.

Figure 4.6 illustrates the horizontal distributions of the kinetic energy genera-
tions for barotropic and baroclinic modes in the Northern Hemisphere. As is men-
tioned above, the integral of the kinetic energy generation of the barotropic mode
over the Northern Hemisphere is insignificant. Therefore, the baroclinic kinetic en-
ergy generation is essentially responsible for the maintenance of atmospheric kinetic
energy in the Northern Hemisphere. But the local barotropic kinetic energy gener-
ation has a considerable value. The positive kinetic energy generations are found in
the upstream side of jet from the east Asia to Japan, and negative values are found
in the downstream side of jet around the central Pacific ocean. There is no significant
kinetic energy generation in the African jet region, however there are clear kinetic
energy peaks in both barotropic and baroclinic modes. The generation over the east
coast of America is also found. However, the amount is about half less than over
the east coast of Asia. The kinetic energy generation over the Tibetan plateau has a

complex distribution because of a complex topography.

The kinetic energy converted from available potential energy in the baroclinic



atmosphere is transformed to kinetic energy of the barotropic mode. Figure 4.8
shows the horizontal distribution of the barotropic-baroclinic interactions of kinetic
energy in the Northern Hemisphere. The locations of the peak of the barotropic-
baroclinic interactions of kinetic energy correspond to the locations of the barotropic
kinetic energy peak, except for the African jet. The peak of the barotropic-baroclinic
interactions of kinetic energy in Asian jet is located somewhat east of the peak of the
baroclinic kinetic generation. Another peak of the barotropic-baroclinic interactions
exists in the upstream side of the Rocky Mountain. There is an interesting distribution
in the Greenland. The negative region broadens over the land of Greenland, and the

positive value distributes over the coast in the south of Greenland.



Table 4.2. The energy of the 3 jet resions. The units of energy are 106 J/m?.

O barotropicd O baroclinicd [ total O
Africa 2.8 (62%) 1.7 (38%) 4.5
Asia 6.2 (67%) 3.1 (33%) 9.3
America 3.9 (80%) 1.3 (20%) 4.9
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Figure 4.4. The horizontal distributions of barotropic (upper) and baroclinic (bot-
tom) kinetic energies for Northern Hemisphere. The Units of energy are 10° J/m?.
The contour interval for barotropic mode is 8 x 105 J/m? and for baroclinic mode is
4 x 10° J/m?.
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Figure 4.6. The horizontal distributions of the kinetic energy generations for
barotropic (upper) and baroclinic (bottom) modes in the Northern Hemisphere. The

units are W/m?. Contour interval is 10 W/m?.
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4.1.4 Difference in the vertical energy spectrum using nu-

merical and analytical vertical structure functions

Tanaka (1985) investigated energetics of the atmospheric general circulation
expanded with 3D normal mode functions, which includes the numerical vertical
structure functions. The numerical vertical structure functions have a large aliasing
in the higher order vertical modes (Fig. 2.1b). Figure 4.9 shows the total energy
spectrum in the vertical wavenumber domain expanded by the numerical vertical
structure functions, where the total energy is the summation of the kinetic energy
and available potential energy. Although the sum of the total energy represents the
global integral for the total energy over the sphere, the spectrum is highly irregular
indicating three peaks at barotropic mode, 2.147 (m=8), and 23.908 (higher order
modes), respectively. A notable energy gap is seen at 3.413 (m=12) which may

corresponds to the Nyquist wavenumber.

In contrast, Fig. (4.10) shows the kinetic and available potential energy spectra
expanded by the analytical vertical structure functions for JRA-25. The vertical
energy spectrum is basically red spectrum in that the total energy is high in lower
order modes and low in higher order modes. There is a marked energy peak at the
vertical wavenumber 1.8266 (m=4) for both kinetic energy and available potential
energy. The half vertical wavelength of the vertical mode m=4 is about 13.7 km,
which is corresponds to the scale of the thickness of the troposphere. This energy
peak is caused by the vertical structure function for m=4 having a maximum at
about 200 hPa and the opposite sign at low troposphere, as seen in Fig. 2.2(a).



The tropospheric jet around upper troposphere may cause the secondary maximum
of kinetic energy. The baroclinic structure of geopotential deviation from the global
mean, which has an opposite sign at low and high troposphere, may be reflected at
m=4. The total energy at this peak is mostly explained by the available potential
energy, whereas the barotropic energy is mostly contained in kinetic energy. The
kinetic energy spectrum has an interesting slope in the higher wavenumber than the
scale of the second energy peak. It is found in this study that the kinetic energy
obeys —3 power of the non-dimensional vertical wavenumber i, in common with the

—3 power law in the horizontal wavenumber domain.

The result obtained in this study shows significant contrast with the vertical
energy spectrum by Tanaka (1985) and Tanaka and Kung (1988), where the spectrum
in the higher order vertical modes appears to be zigzag as in Fig. 4.9 by the influence

of aliasing due to the numerical solutions.
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Figure 4.9. The vertical energy spectrum expanded by the numerical vertical struc-
ture functions. The data period are from 1 Jan 1979 to 31 Jan 1979. The units of

energy are J/m?.
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4.2 3D Normal Mode Energetics

4.2.1 Energy spectrum of the barotropic atmosphere

Tanaka et al. (2004) investigated the characteristic of the energy spectrum
for barotropic motion in the phase speed domain. The spectral characteristic for the
barotropic component in the phase speed domain was argued by Tanaka et al. (2004),
by using a criterion, which is a Rossby wave breaks down when a local meridional
gradient of the potential vorticity is negative, i.e., dq/Jy < 0, somewhere in the
domain. Using this criterion, they derived that the energy spectrum is proportional
to ¢? (Fig. 4.11) and also the barotropic energy spectrum of the general circulation

E can be represented as:
E = mc?, (4.1)
where m is the total mass of the atmosphere for unit area.

Figure 4.11 illustrates the barotropic energy spectrum FE; and the energy flux
Fy; in the phase speed domain (see Terasaki and Tanaka 2007). The energy levels
are connected by the dotted line for the same zonal wavenumber n with different
meridional mode number [. The red line in the figure denotes the spectral slope of F =
mc? derived by Tanaka et al. (2004) from the criterion of the Rossby wave saturation,
Jq/0y < 0 (Garcia, 1991). The energy spectrum indicates the two different regimes
with distinct slopes for small ¢; and large ¢;. According to this figure, it is found

that the energy spectrum obeys approximately the 2 power law of the phase speed of



Rossby wave for small ¢; in the turbulent regime R; > 1.

The atmospheric energy is converted from the baroclinic to the barotropic com-
ponents at the synoptic scale motions when the baroclinicity is removed by the baro-
clinic instability. The energy injected at the synoptic scale (¢;=0.004) cascades up to
the larger scale obeying the 2 power law of the phase speed ¢; (Tanaka et al. 2004).
The up-scale energy cascade is, however, arrested at the Rhines scale Cg, beyond
which the linear term dominates (R; < 1), due to the increased o or ¢. The en-
ergy spectrum is much steeper than the ¢? in the short wave range where the energy

cascades down.

The characteristic spectral slope in the barotropic atmosphere can be obtained
from eq.(4.1) by applying the dispersion relation of Rossby wave. The phase speed of

the Rossby wave is given by a total wavenumber k£ on the g3 plane,

g
If we substitute this relation into Eq. (4.1), we obtain the following relation,
E(k) = mB3*k ™. (4.3)

If we assume the isotropy for zonal wind u and the meridional wind v over the range
of synoptic to short waves, the energy spectrum can be expressed as a function of

zonal wavenumber n instead of total wavenumber k.
E(n) ~mp°n~". (4.4)

According to Eq. (4.4), it is inferred that the energy spectrum in the zonal wavenum-
ber domain obeys —4 power of the zonal wavenumber.



Figure 4.12 illustrates the zonal energy spectrum of Rossby mode and gravity
mode for the barotropic component. The red line in the figure denotes the spectral
slope of the —4 power of the zonal wavenumber inferred by the theory. According to
the result, it is found that the observed zonal energy spectrum exactly obeys the —4
power of the zonal wavenumber for synoptic scale motions (n = 9 — 30). The zonal
energy spectrum for planetary scale is less steeper than that for synoptic scale, and

that beyond n = 35 is much steeper than the —4 power law.

The energy level of the gravity mode for barotropic component is very small
compared to the Rossby mode. The eddy energy peak exists in the zonal wavenumber
n = 2. The spectral slope is apparently different from that of the Rossby wave

saturation theory in this range.

Figure 4.13 illustrates the zonal energy spectrum of Rossby mode and gravity
mode as in Fig. 4.12, but for the baroclinic component. The red and blue lines in the
figure denote the spectral slope of the —3 and —4 powers of the zonal wavenumber.
According to the result, it is confirmed that the observed zonal energy spectrum
approximately obeys the —3 power of the zonal wavenumber for synoptic scale motions
as is consistent with previous numerous studies. Hence, the characteristic —4 power

law is specific only to the barotropic component of the atmosphere.

In Figs. 4.12 and 4.13, the energy slopes for the higher wavenumber of the

Rossby mode do not obey the specific laws, but they become steeper.
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years of the JRA-25 during the winter DJF. Circles and square denote the energy
for Rossby and gravity modes, respectively. The solid line in the figure denotes the
spectral slope of —4 power derived from Eq. (4.4).
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4.2.2 Energy interactions

Energy interactions in the zonal wavenumber domain and in the vertical spectral
domain are analyzed in this subsection based on (2.48). Figure 4.14 illustrates the
nonlinear interactions of kinetic energy and available potential energy in the zonal
wavenumber domain (n = 1 — 25) by (a) summing all vertical modes (m = 0 — 22),
(b) for the barotropic mode (m = 0), and (c) for the baroclinic modes (m = 1 — 22),
respectively. Similarly, Fig. 4.15 illustrates the nonlinear interactions in the vertical
mode domain (m = 0 — 22) by (a) summing all zonal wavenumbers (n = 0 — 50), (b)
for zonal component (n = 0), and (c) for all eddy components (n = 1 — 50). Those
energy interactions are supposed to vanish when summed over the all wavenumbers
due to the energy conservation law. However, the summation of the available potential
energy interactions, term C', did not vanish by some assumptions involved and the
accumulation of computational error. We thus have adjusted the errors at the zonal
component by redistributing it linearly as a function of the vertical and meridional
wavenumbers to meet the conservation law. Such an adjustment was not necessary

for the term B.

According to the result of the analysis, energy of the general circulation of
the atmosphere is first supplied at the available potential energy of zonal baroclinic
components by the differential heating of the solar radiation, as indicated by negative
values of C'in Fig. 4.15 (b). The negative values are balanced by positive values of the

interactions C' at eddy baroclinic components as seen in Fig. 4.15 (¢) and in Fig. 4.14



(c). This means that the zonal available potential energy is transformed into the eddy
available potential energy, both of which are contained in the baroclinic component
of the atmosphere. As seen in Fig. 4.14 (c), the eddy available potential energy is
converted into the eddy kinetic energy as seen by the opposite signs of B and C. It
is also found that the baroclinic eddy kinetic energy is transformed into barotropic
kinetic energy as seen by positive B in Fig. 4.14 (b) and in Fig. 4.15 (c¢). The eddy
barotropic energy accumulated at synoptic to planetary waves is finally transformed
to zonal barotropic energy as seen by positive B in Fig. 4.15 (b). The kinetic energy
supplied to barotropic mode is dissipated by surface friction and viscosity. These
results are consistent with Tanaka and Kung (1988), which have been analyzed using

the numerical vertical structure functions.

The effect of using the analytical vertical structure functions is found at the
nonlinear interactions for the higher order vertical modes. Small but consistently
negative values of the available potential energy interactions over m > 6 in Fig. 4.15
(b) indicate that an energy source of the atmospheric general circulation exists in
higher order vertical modes. There are some available potential energy source at m =
1 and 3. The kinetic energy interactions are hardly seen in the higher order vertical

modes (Figs. 4.15b and c).

Figure 4.16 shows the energy flux of kinetic energy (Fp), available potential
energy (F¢), and total energy (Fy) in the vertical wavenumber domain. Negative
and positive values indicate upscale and downscale cascades, respectively. It is shown

that energy flux basically shows negative value, indicating dominant inverse energy



cascade from smaller vertical scale to larger vertical scale motions. As a result, the
atmospheric energy is transformed from baroclinic to barotropic components. The
kinetic energy flux is the largest at the vertical wavenumber 0.00125 (m=2), and peak
of the available potential energy flux is seen at 0.01186 (m=7). It is suggested from
these analyses using the analytical vertical structure functions that the energy inter-
actions are performed by relatively larger vertical scale motions for the kinetic energy,
whereas there is a complex structure of the available potential energy interactions in

the higher order vertical modes.
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CHAPTER V
DISCUSSION

In order to investigate the atmospheric energetics in spectral domain, it is very
important what basis functions are chosen. In general, Fourier expansion is used for
the basis function to zonal direction, which is constituted by trigonometric functions.
The Hough vector functions are used as the meridional basis functions. Kasahara
and Puri (1981) obtained the orthonormal eigensolution to the vertical structure
equation. But the vertical structure functions have a large aliasing in higher order
vertical modes because it is solved numerically (Fig. 2.1). In this study, we used
the analytical vertical structure functions obtained by assuming a constant static
stability parameter. In general, the static stability in the stratosphere is more larger
than that in the troposphere, it might not be good to assume it as a constant. But
the author supposes that it is better to use analytical solution than to use numerical
solution, because the energy spectrum calculated with numerical solution has much
aliasing in the large vertical modes (Fig. 4.9). The vertical wavelength is determined
by the vertical wavenumber, however the vertical wavelength of each vertical mode
is affected by the pressure of the top of the atmosphere. It should be noticed that
the vertical wavelength is different at the same vertical wavenumber if the different

pressure of the top atmosphere is set.

The energy spectrum in the horizontal wavenumber domain has been investi-

gated by many researchers. The -3 power law of the energy spectrum in the horizontal



wavenumber domain has widely known. There are some theories about this —3 spec-
tral slope in the horizontal wavenumber. Tung and Orland (2003) suggested that the
energy spectrum obeys —3 power law in the inertial subrange, which has no energy
source region. Kraichnan (1967) predicted a —3 power law for 2D, isotropic and
homogeneous turbulence in a forward enstrophy cascading inertial subrange on the
short-wave side of the scale of energy injection. In this study, the energy spectrum in
the vertical wavenumber domain was investigated using the analytical vertical struc-
ture functions. It is found that the vertical kinetic energy spectrum obeys the law of
—3 power of the vertical wavenumber. This —3 power spectrum can not be obtained
due to the aliasing in the higher vertical wavenumber, if the numerical vertical struc-
ture functions are used. There is no theory about the —3 power law of the energy
spectrum in the vertical wavenumber domain. There must be some theorem for this
specific spectrum in the vertical wavenumber domain, such as 2 power law of the
phase speed which was derived from Rossby wave saturation theory (Tanaka et al.

2004).

In this study, a new analysis method for energy cycle in the vertical wavenumber
domain is suggested using the analytical vertical structure functions. The baroclinic-
baroclinic interaction terms of kinetic and available potential energies vanish when
they are summed up with all vertical modes, and the energy cycle between barotropic
(mean) and baroclinic (shear) can be estimated. The calculation of interaction terms
is very difficult, because these terms are affected by the boundary condition and the

calculation method, and so on. The energy of the atmospheric general circulation



is mostly included in the troposphere because the density above the stratosphere is
much less than in the troposphere. The half-wavelength of the vertical mode m =4
is about 13.7km which is one of the baroclinic modes. This scale corresponds to
the scale of the tropospheric baroclinic structure which has a opposite sign at lower
troposphere and upper troposphere. The vertical modes around m =4, for example
m =3 and m =5, have similar vertical scales, so the baroclinic kinetin energy and
available potential energy around the vertical mode m =4 has as much energy as
m =4. It is suggested that the energy of the polar vortex in the stratosphere is
indicated in m =1 which has a large amplitude and scale in the stratosphere. The

m =1 of the kinetic energy receives energy by the barotropic-baroclinic interactions.



CHAPTER VI
CONCLUSIONS

In this study, the atmospheric energetics in the vertical wavenumber are ana-
lyzed. The analytical vertical structure functions are used as the basis functions in
the vertical direction. The analytical vertical structure functions can be obtained by
assuming the static stability parameter v to be constant value. The energy spectrum
and the energy interactions of the atmospheric general circulation are also analyzed,
using the expansion in three dimensional normal mode functions. The data used in

this study are JRA-25 and JCDAS from 1979 to 2007.

The vertical expansion is applied to a system of the primitive equations in
consideration of the proper boundary conditions, and the kinetic energy and available
potential energy equations are derived. Using this analysis method, we can examine

the interactions of kinetic and available potential energies among baroclinic modes.

According to the result of the analysis in dividing the atmospheric data into
vertical mean (barotropic) and its shear (baroclinic), we obtain the energy circulation

of the atmospheric general circulation. This result is consistent with previous studies.

According to the result of the analysis in the vertical wavenumber domain, it
is found that the baroclinic kinetic energy interacts within the baroclinic modes, and
then they are transformed to the barotropic mode. The interactions for available

potential energy are very small compared to that for the kinetic energy.



According to the result of the energy spectrum, the vertical energy spectrum is
found to be red spectrum with characteristic spectral slopes of -3 power of the ver-
tical wavenumber for kinetic energy. There is a marked energy peak at the vertical
wavenumber 1.8266 for both kinetic energy and available potential energy. The tropo-
spheric jet near 200 hPa may cause the secondary maximum of the kinetic energy at
the vertical structure function for m=4, having a maximum at about 200 hPa and the
opposite sign at lower troposphere. The baroclinic structure of geopotential deviation
from the global mean, which has an opposite sign at low and high troposphere, may
be reflected at m=4. The barotropic energy is mostly explained by kinetic energy,
whereas the higher order vertical modes are mostly explained by available potential

energy.

The result obtained in this study shows significant contrast with the vertical
energy spectrum by Tanaka (1985) and Tanaka and Kung (1988), where the spectrum
in the higher order vertical modes appears to be zigzag by the influence of aliasing in

the vertical structure functions.

According to the result for the energy interactions, energy flows are represented
from the zonal baroclinic energy to eddy baroclinic energy to eddy barotropic energy,
and finally to zonal barotropic energy, as is consistent with the result by Tanaka and
Kung (1988). It is found in this study using the analytical vertical structure func-
tions that there are small but consistently negative values of nonlinear interactions of
available potential energy at zonal baroclinic components in the higher order vertical

modes. The result suggests that the source of available potential energy in the zonal



field is distributed in wide range of the vertical spectrum at large vertical wavenum-
bers. The energy source of the atmospheric general circulation is basically explained
by the solar radiation, which is transformed to sensible and latent heat. The former
has a peak near the surface while the latter has a peak in the mid troposphere. In
order to represent the diabatic heating by the sensible heat near the surface, not
only the lower order modes but also the higher order modes of the vertical structure

functions are required.

The analysis of vertical energy flux shows that the energy injected at the higher
order baroclinic modes by the solar radiation is transformed to lower order vertical

modes, ultimately to barotropic mode.

Most of the previous 2D turbulence experiments are conducted under no energy
source or at most with a point-wise energy source in order to examine the inertial
subrange. Welch and Tung (1998) examined the energy slope with two-level quasi
geostrophic model, which is a baroclinic model. Basdevant et al. (1981) investigated
using the barotropic nondivergent model with forcing. They obtained the -4 power
spectrum with their model which has a rotation and baroclinic instability as a forcing.
It is similar to our saturation theory of the Rossby wave. But they did not mention

why the energy slope becomes -4 power law for the barotropic component.

In this study, the characteristics of the energy slope for the barotropic compo-
nent is examined in the framework of the 3D normal mode decomposition. The energy

slope of E = mc? was derived by Tanaka et al. (2004) based on the criterion of the



Rossby wave breaking. The wave breaking occurs when the local meridional gradient

of the potential vorticity is negative, i.e., d¢/Jy < 0, somewhere in the domain.

In this study, it is derived that the energy spectrum for the barotropic com-
ponent obeys the —4 power of zonal wavenumber, because the phase speed of the
Rossby wave ¢ can be replaced with total wavenumber, ¢ = —3/k?, and if we assume
the isotropy for zonal wind u and the meridional wind v over the range of synoptic
to short waves, the energy spectrum can be expressed as a function of n instead of k.

This theoretical law of the energy slope is examined by analyzing with JRA-25.

According to the result of the analysis, the spectral slope agrees quite well with
the —4 power law for the barotropic component of the atmosphere. It is, however,
confirmed that the spectrum obeys the —3 power law as in previous studies for the
baroclinic atmosphere. It is also found that the barotropic energy spectrum obeys
the saturation theory where energy cascades up, but it does not obey where energy

cascades down.
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