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ABSTRACT

In this study, the spectral energetics of the atmospheric circulation was investi-

gated using analytical vertical structure functions. The analytical vertical structure

functions can be obtained by assuming a constant static stability parameter.

According to the result of the analysis of the energy spectrum using the ana-

lytical vertical structure functions, it is found that the energy spectrum indicates a

clear peak in the middle vertical modes, and the spectrum decreases monotonically

at the higher order vertical modes. It is found in this study that the energy spectrum

in the vertical wavenumber domain obeys −3 power of the nondimensional vertical

wavenumber µm. The energy interactions for lower order vertical modes are consis-

tent with that by Tanaka and Kung (1988). However, it is found from the analysis

of the energy interactions that there is another energy source region in the higher

order vertical modes in the zonal field. It is also found from the energy flux analysis

in the vertical wavenumber domain that the atmospheric energy is converted from

baroclinic component to barotropic component.

In this study, characteristics of the energy slope for the barotropic component

of the atmosphere are also examined in the framework of the 3D normal mode de-

composition. The energy slope of E = mc2 was derived by Tanaka et al. (2004) based

on the criterion of the Rossby wave breaking, where E is total energy, c is a phase

speed of Rossby wave, and m is a total mass per unit area. The wave breaking occurs
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when the local meridional gradient of potential vorticity q is negative, i.e., ∂q/∂y < 0,

somewhere in the domain. If the spectrum obeys the c2 law, it should obey the −4

power of the zonal wavenumber n, because the phase speed c is related to the total

wavenumber by c = −β/k2, and if we assume the isotropy for zonal wind u and the

meridional wind v over the range of synoptic to short waves, the energy spectrum can

be expressed as a function of n instead of k.

The theoretical inference of the energy slope is examined using JRA-25 data.

According to the result of the analysis, the spectral slope agrees quite well with the −4

power law of the zonal wavenumber for the barotropic component of the atmosphere.

It is, however, confirmed that the spectrum obeys the −3 power law as in previous

studies for the baroclinic atmosphere. It is also found that the barotropic energy

spectrum obeys the saturation theory where energy cascades up, but it does not obey

where energy cascades down.

According to the energetics in the vertical wavenumber domain using the an-

alytical vertical structure functions, it is found that the available potential energy

injected in the baroclinic modes converted to the kinetic energy of the same vertical

scale without interacting within the vertical modes. The baroclinic kinetic energy

interacts within baroclinic modes, and then they are transformed to the barotropic

mode.
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CHAPTER I

INTRODUCTION

The atmospheric energetics has been investigated since the atmospheric energy

flow was discussed by Lorenz (1954) using the concept of the available potential en-

ergy. Lorenz (1954) studied the energetics of atmospheric general circulation with

dividing the atmospheric data into zonal and eddy components. Saltzman (1957)

expanded the energy equations into the zonal wavenumber domain and showed that

the kinetic energy of the cyclone-scale waves is transformed into both the planetary

waves and the short waves in terms of nonlinear wave-wave interactions. Kasahara

(1976) showed a computational scheme of normal mode functions which is called

Hough functions in the barotropic atmosphere. The normal modes are the solutions

of the linearized primitive equations over a sphere and have been applied extensively

to nonlinear normal mode initialization techniques. He applied the Hough functions

to an orthonormal basis for the energy decomposition in the meridional mode do-

main. Since Kasahara and Puri (1981) obtained orthonormal eigensolutions to the

vertical structure equation, it became possible to expand the atmospheric data into

the three-dimensional harmonics of the eigensolutions. Ferdinand (1981) expanded

the atmospheric data with the vertical structure functions derived by generated with

empirical orthogonal function (EOF) and Bessel functions.

— 1 —



Tanaka (1985) and Tanaka and Kung (1988) studied the atmospheric energy

spectrum and interactions expanding the atmospheric data to the three-dimensional

normal mode functions. The vertical structure functions used by them were obtained

by solving the vertical structure equation with a finite difference method. The nu-

merical vertical structure functions have quite large aliasing for higher order vertical

modes indicating largest amplitudes near the sea level despite that the analytical

solutions indicate the largest amplitudes always in the upper atmosphere (see Sasaki

and Chang 1985).

The barotropic-baroclinic interactions have been studied by many researchers

(Wiin-Nielsen 1962; Nielsen and Drake 1965; Smagorinsky 1963). Wiin-Nielsen (1962)

investigated the kinetic energy interactions between the vertical shear flow and the

vertical mean flow. It was shown by Wiin-Nielsen for an analysis averaged over

the Northern Hemisphere that the atmospheric available potential energy is released

through the baroclinic flow, which acts as a catalyst, to support the motion of

barotropic flow. According to their analysis, the energy conversion between shear

flow and mean flow is about 30 percent of the conversion between the available po-

tential energy and the shear flow kinetic energy.

The energy spectrum is characterized by −3 power law with respect to the hor-

izontal wavenumber k over the synoptic to sub-synoptic scales (Wiin-Nielsen 1967;

Boer and Shepherd 1983; Nastrom et al. 1984; Shepherd 1987). Using dimensional

analysis, Kraichnan (1967) predicted a k−3 power law for 2D, isotropic and homoge-

neous turbulence in a downscale enstrophy cascading inertial subrange on the short-
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wave side of the scale of energy injection. Basdevant et al. (1981) showed the k−4

spectral slope in enstrophy cascading subrange by the barotropic nondivergent model

with forcing. It was shown by Tung and Orland (2003) that not only enstrophy

but also energy cascade down from synoptic to meso scales. The down scale energy

cascade is responsible for a k−5/3 spectrum on the short-wave side where the energy

cascade exceeds the enstrophy cascade.

Tung and Orland (2003) demonstrated that the energy injected at the synoptic

scale cascades up to planetary waves and zonal motions where another dissipation

exists. Contrasted to the k−3 law over the synoptic to subsynoptic scales, there is no

appropriate theory to describe the spectral characteristics at synoptic to planetary

scales because of the existence of the energy source due to baroclinic instability. Welch

and Tung (1998) argued that the theory of nonlinear baroclinic adjustment (Stone

1978) is responsible to determine the spectrum over the energy source range. They

introduced a breaking criterion proposed by Garcia (1991) to determine the upper

bound in meridional heat flux by the disturbances. According to the criterion, a

Rossby wave breaks down when a local meridional gradient of the potential vorticity

is negative, i.e., ∂q/∂y < 0, somewhere in the domain.

The spectral characteristic for the barotropic component in the phase speed do-

main was argued by Tanaka et al. (2004), by using the criterion of the ∂q/∂y < 0.

Using 3D normal mode energetics, they investigated the characteristics of the energy

spectrum for the barotropic component (Tanaka 1985). Divergence of the shallow

water system is contained mostly in the gravity modes with large phase speed c, but
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it is negligible for the Rossby modes with small c because the divergence is propor-

tional to eigenfrequency σ. Therefore, the non-divergent quasi-geostrophic model is

sufficient to represent the Rossby wave breaking for the barotropic component. They

derived that the energy spectrum is proportional to c2 and also the barotropic energy

spectrum of the general circulation E can be represented as E = mc2. They confirmed

that the theoretical inference of the slope agrees quite well with the observation.

The purposes of this study are to investigate the energetics of the atmospheric

general circulation in the vertical wavenumber domain using the analytical vertical

structure function, the characteristics of the energy slope in the barotropic atmo-

sphere, and the energetics based on the 3D normal mode decomposition. Chapter

II describes the methodology of this study including primitive equations, vertical

structure functions, 3D normal mode functions, kinetic and available potential en-

ergy equations. Chapter III describes the data used in this study. The results of this

study in Chapter IV are divided in three parts. First, the result of the energetics

analysis in the vertical wavenumber domain is presented. Second, the characteris-

tics of the energy slope in the barotropic atmosphere are described (Terasaki and

Tanaka 2007a). Third, the energetics based on the 3D normal mode decomposition

are described (Terasaki and Tanaka 2007b). Discussion and conclusions are given in

Chapters V and VI, respectively.
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CHAPTER II

METHODOLOGY

2.1 Primitive Equation

The governing equations used in this study are the primitive equations: equation

of motions, thermodynamic energy equation, hydrostatic equation, equation of state,

and law of mass conservation. A system of primitive equations is constituted with

a spherical coordinate of longitude λ, latitude θ, nondimensional pressure σ = p/ps

(ps = 1000 hPa), and time t, where ps is constant surface pressure:

∂u

∂t
− 2Ω sin θv +

1

a cos θ

∂φ

∂λ
= −V · ∇u − ω

∂u

∂σ
+

tan θ

a
uv + Fu, (2.1)

∂v

∂t
+ 2Ω sin θu +

1

a

∂φ

∂θ
= −V · ∇v − ω

∂v

∂σ
− tan θ

a
uu + Fv, (2.2)

∂cpT

∂t
+ V · ∇cpT + ω

∂cpT

∂σ
= ωpsα + Q, (2.3)

1

a cos θ

∂u

∂λ
+

1

a cos θ

∂v cos θ

∂θ
+

∂ω

∂σ
= 0, (2.4)

psσα = RT, (2.5)

∂φ

∂σ
= − α

ps

, (2.6)

where u and v are zonal and meridional wind speed, ω is vertical p - velocity divided

by constant surface pressure ps, φ is geopotential, T is air temperature, a is radius
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of the earth, Ω is the angular speed of the earth’s rotation, cp is the specific heat at

constant pressure, α is specific volume, and R is a gas constant, respectively.

In order to obtain the conservation law of the available potential energy, we

modify the thermodynamic energy equation. Dividing the air temperature T into

the global mean at each pressure level and the departure from the global mean (T =

T0 + T ′), and applying Eqs.(2.5) and (2.6) to Eq.(2.3):

∂T ′

∂t
+ V · ∇T ′ + ω

(
∂T ′

∂σ
− RT ′

σcp

)
+ω

(
dT0

dσ
− RT0

σcp

)
=

Q

cp

. (2.7)

The third term of the left hand side in Eq. (2.7) means the adiabatic change of the

temperature deviation. Here, the temperature deviation is negligible compared to the

global mean temperature:

∂

∂t

(
− σ2

Rγ

∂φ′

∂σ

)
− σ2

Rγ
V · ∇ ∂φ′

∂σ
− ωσ

γ

∂

∂p

(
σ

R

∂φ′

∂σ

)
−ω =

Qσ

cpγ
, (2.8)

where the static stability parameter is (Tanaka 1985)

γ =
RT0

cp

− σ
dT0

dσ
. (2.9)

The prognostic equation of geopotential can be obtained by differentiating Eq.

(2.8) with respect to nondimensional pressure σ, and applying the law of mass con-

servation:

∂

∂t

(
− ∂

∂σ

σ2

Rγ

∂φ′

∂σ

)
+

1

a cos θ

∂u

∂λ
+

1

a cos θ

∂v cos θ

∂θ
=

∂

∂σ

[
σ2

Rγ
V · ∇ ∂φ′

∂σ
+

ωσ

γ

∂

∂σ

(
σ

R

∂φ′

∂σ

)]
+

∂

∂σ

(
Qσ

cpγ

)
. (2.10)

— 6 —



From Eqs. (2.1), (2.2) and (2.10), using a matrix notation, these primitive equations

may be written as

M
∂U

∂t
+ LU = B + C + F, (2.11)

where

U =

(
u v φ′

)T

(2.12)

M =


1 0 0

0 1 0

0 0 − ∂
∂σ

σ2

γR
∂
∂σ

 , (2.13)

L =


0 −2Ω sin θ 1

a cos θ
∂
∂λ

2Ω sin θ 0 1
a

∂
∂θ

1
a cos θ

∂
∂λ

∂( ) cos θ
a cos θ∂θ

0

 , (2.14)

B =


−V · ∇u − ω ∂u

∂σ
+ tan θ

a
uv

−V · ∇v − ω ∂v
∂σ

− tan θ
a

uu

0

 , (2.15)

C =


0

0

∂
∂σ

[
σ2

γR
V · ∇ ∂φ′

∂σ
+ ωσ

γ
∂
∂σ

(
σ
R

∂φ′

∂σ

)]

 , (2.16)
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F =


Fu

Fv

∂
∂σ

(
σQ
cpγ

)

 . (2.17)

The left-hand side of Eq. (2.11) represents linear terms with matrix operators

M and L and the dependent variable vector U. The matrix M is referred to as a mass

matrix which is nonsingular and positive definite under a proper boundary conditions.

The right-hand side represents a nonlinear term vector B and C and a diabatic term

vector F, which includes the zonal Fu and meridional Fv components of frictional

forces and a diabatic heating rate Q.

If we assume a resting atmosphere and the terms more than second order as

negligible, we can derive the vertical structure equation and horizontal structure

equation as follows, by the separation of variables:

− d

dσ

(
σ2 dGm

dσ

)
= λmGm, (2.18)

(Y −1
m LXm) Hnlm = iσTnlmHnlm, (2.19)

where Gm is the vertical structure function, the subscript m is the vertical mode

number, λm = Rγ
ghm

, α = γ/Ts, ps (=1000 hPa) and Ts (=300 K) are surface pressure

and surface temperature of the reference state. σTnlm is the eigenfrequency of the

Laplace’s tidal equation. It should be noticed to distinguish between nondimensional

pressure σ and σT The scaling matrices should be defined for each vertical index as:

Xm = diag(
√

ghm,
√

ghm, ghm), (2.20)
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Ym = diag(2Ω
√

ghm, 2Ω
√

ghm, 2Ω), (2.21)

where diag represents diagonal matrix and the entries
√

ghm is a phase speed of gravity

waves in shallow water, associated with the equivalent height hm for the vertical mode

m.
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2.2 Vertical Structure Functions

The vertical structure functions which are the basis functions in the vertical

direction can be obtained by solving the vertical structure equation. The vertical

structure equation can be obtained by assuming that the atmospheric motion is adi-

abatic and at rest (ū = v̄ = φ̄′ = 0), and neglecting the second order and more

terms.

− d

dσ

(
σ2 dGm

dσ

)
= λmGm, for ϵ < σ < 1, (2.22)

dGm

dσ
= 0, at σ = ϵ, (2.23)

dGm

dσ
+ αGm = 0, at σ = 1. (2.24)

According to Eq. (2.9), the static stability parameter γ is a function of mean tempera-

ture for the reference state on the nondimensional pressure σ, so the vertical structure

equation can only be solved numerically. Figure 2.1 (a)-(b) show the vertical profiles

of the numerical vertical structure functions by the finite difference method using the

global mean climate temperature of JRA-25. Zagar et al. (submitted to Monthly

Weather Review) also got the similar vertical structure functions which have a large

aliasing in the higher vertical modes, because of solving the vertical structure equa-

tion numerically. The vertical mode m = 0 is called the barotropic mode because

the values of the mode is approximately constant with no node in the vertical. The

vertical mode m = 1 has one node in the vertical and m = 2 has two nodes and so on,

and they are called baroclinic modes. These vertical structure functions of the lower

order vertical modes have a right structure showing the largest amplitudes in the
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upper atmosphere (Fig. 2.1a). However, the vertical structure functions for higher

order vertical modes of m=17 to 22 (Fig. 2.1b) show quite large amplitudes near the

sea level with almost zero values in the upper atmosphere, despite that the analyti-

cal solutions are known to have the largest amplitudes in the upper atmosphere (see

Sasaki and Chang 1985).

In this study, we can get the analytical vertical structure functions by assuming

that the static stability parameter γ is a constant. Since γ is a constant, the vertical

structure equation becomes so-called Euler equation. Applied to a rigid top boundary

condition at σ = ϵ, the problem is reduced to the regular boundary value problem of

Sturm-Liouville type. In this study the top of the atmosphere is assumed at σ = 0.001

(p =1 hPa).

Under this geometric configuration, we can solve the Euler equation as a se-

ries solution (see William and Richard, 2005), and the infinite series of the vertical

structure functions are represented as follows:

G0(σ) = C10σ
b10 + C20σ

b20 , (2.25)

Gm(σ) = σ− 1
2 {C1m cos(µm ln σ) + C2m sin(µm ln σ)}, (2.26)

b1m = − 1

2
+ µm, b2m = − 1

2
− µm, µm =

√
| 1

4
− λm |, (2.27)

where the eigenvalues λm are obtained by solving the eigenvalue problem of Eq. (2.22),

and the equivalent height hm and corresponding vertical scale of each vertical mode

are listed in Table 2.1. In this study, µm is defined as a vertical wavenumber, which

has no dimension.

— 11 —
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Figure 2.1. The vertical profiles of the numerical vertical structure functions for (a)

m = 0 − 5 and (b) m = 17 − 22.
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Numerical Vertical Structure Function 
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Figure 2.1. Continued.
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Analytical Vertical Structure Function 
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Table 2.1. Vertical mode number, equivalent height (m), vertical wavenumber and
vertical wavelength (km) of the analytical vertical structure functions used in this
study.

Equivalent Vertical Vertical
Vertical mode height hm(m) wavenumber µm wavelength (km)

0 9726.6　 -　 -　　
1 1864.8　 0.4709　 106.75　　
2 800.2　 0.9223　 54.50　　
3 412.2　 1.3739　 36.59　　
4 245.7　 1.8266　 27.52　　
5 161.8　 2.2801　 22.05　　
6 114.1　 2.7339　 18.39　　
7 84.6　 3.1880　 15.77　　
8 65.2　 3.6423　 13.80　　
9 51.8　 4.0966　 12.27　　
10 42.0　 4.5511　 11.04　　
11 34.8　 5.0056　 10.04　　
12 29.3　 5.4601　 9.21　　
13 25.0　 5.9147　 8.50　　
14 21.6　 6.3694　 7.89　　
15 18.8　 6.8240　 7.37　　
16 16.6　 7.2787　 6.91　　
17 14.7　 7.7333　 6.50　　
18 13.1　 8.1880　 6.14　　
19 11.8　 8.6427　 5.82　　
20 10.6　 9.0974　 5.53　　
21 9.6　 9.5521　 5.26　　
22 8.8　 10.0069　 5.02　　
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2.3 3D Normal Mode Functions

The 3-D normal mode functions are given by a tensor product of vertical struc-

ture functions (vertical normal modes, Gm) and Hough harmonics (horizontal normal

modes, Hnlm) as Πnlm = Gm Hnlm. It is known from Tanaka (1985) that they form a

complete set and satisfy an orthonormality condition under an inner product < , >

defined as:

< Πnlm, Πn′l′m′ >=
1

2π

∫ 1

0

∫ π/2

−π/2

∫ 2π

0

Πnlm · Π∗
n′l′m′cosθdλdθdσ

= δnn′δll′δmm′ , (2.28)

where the asterisk denotes the complex conjugate, the symbols δij is the Kronecker’s

delta, and the surface pressure ps is treated as a constant near the earth’s surface.

In order to obtain a system of spectral primitive equations, we expand the vector

U and F in 3-D normal mode functions in a resting atmosphere, Πnlm(λ, θ, p):

U(λ, θ, σ, t) =
∑
nlm

wnlm(t)XmΠnlm(λ, θ, σ), (2.29)

F (λ, θ, σ, t) =
∑
nlm

fnlm(t)YmΠnlm(λ, θ, σ). (2.30)

Here, the dimensionless expansion coefficients wnlm(t) and fnlm(t) are the functions

of time alone. The subscripts represent zonal wavenumbers n, meridional index l,

and vertical index m. They are truncated at N , L, and M , respectively.

Using the orthonormal condition (2.28) of the 3-D normal mode functions, the

expansion coefficients of the state variables wnlm and external forcings fnlm in (2.29)
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and (2.30) may be computed by the set of inverse Fourier transforms:

wnlm =< U(λ, θ, σ, t), X−1
m Πnlm(λ, θ, σ) >,

fnlm =< F (λ, θ, σ, t), Y −1
m Πnlm(λ, θ, σ) > . (2.31)

Applied to the same inner product for (2.11), the weak form of the primitive

equation becomes

< M
∂U

∂t
+ LU − N − F, Y −1

m Πnlm >= 0. (2.32)

Substituting (2.29) and (2.30) into (2.32), rearranging the time-dependent variables,

and evaluating the remaining terms, we obtain a system of 3-D spectral primitive

equations in terms of the spectral expansion coefficients:

dwi

dτ
+ iσTiwi = −i

∑
jk

rijkwjwk + fi, i = 1, 2, 3, ... (2.33)

where τ is a dimensionless time scaled by (2Ω)−1 and rijk is the interaction coeffi-

cients for nonlinear wave-wave interactions. The triple subscripts are shortened for

simplicity as wnlm = wi. There should be no confusion in the use of i for a subscript

even though it is used for the imaginary unit.

As seen in Tanaka et al. (2004), the ratio of the nonlinear term to the linear

term is referred to as a spherical Rhines ratio Ri, which characterizes the turbulence

regime Ri > 1, and the wave regime Ri < 1, and the scale where Ri = 1 is defined as

the Rhines scale CR in this study:

Ri =
|
∑

jk rijkwjwk|
|σTiwi|

. (2.34)
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In order to derive (2.33) from (2.32), we first show the following relation for the

linear terms.

< M
∂U

∂t
+ LU, Y −1

m Πnlm >=
dwi

dτ
+ iσTiwi, i = 1, 2, 3, ... (2.35)

The vertical differential operator M may be replaced by its eigenvalue based on the

relation of the vertical structure equation (2.18):

MΠi = diag(1, 1,
1

ghi

) Πi. (2.36)

By substituting (2.29) in (2.35), using the relation in (2.19) and (2.36), we obtain

∑
j

< 2ΩY −1
j MXjΠj, Πi >

dwj

dτ
+ < Y −1

j LXjΠj, Πi > wj

=
dwi

dτ
+ iσTiwi, (2.37)

which completes the proof of (2.35).

The proof for the external forcing F in (2.32) to be transformed to fi in (2.33)

is straightforward by the relation (2.28).

Finally, we derive the specific form of the nonlinear interaction coefficients rijk

in (2.33). As noted before, the 3-D normal mode function is given by the tensor

products of Gm and Hnlm as Πnlm = HnlmGm, in which the Hough harmonics are

given by the tensor products of the meridional normal modes (Hough vector functions)

and longitudinal normal modes (complex-valued trigonometric functions): Hnlm =

(Unlm,−iVnlm, Znlm)T einλ. The computational method of the Hough vector functions

(Unlm,−iVnlm, Znlm)T are detailed by Swartrauver and Kasahara (1985), and that
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of the vertical normal mode Gm by Kasahara (1984). We assume that those basis

functions are already available.

By taking the inner products of the nonlinear term N and the 3-D normal mode

functions, we can prove the following relation for the nonlinear interaction coefficients:

< N, Y −1
m Πnlm >= −i

∑
jk

rijkwjwk, i = 1, 2, 3, ... (2.38)

The running indices i, j, k represent combinations of the 3-D wavenumbers. We

need to distinguish them respectively as nilimi, njljmj, and nklkmk. Likewise, the

equivalent heights and vertical structure functions are also distinguished similar way

with the subscripts of i, j, k. Substituting (2.16) and (2.21) into (2.38), the inner

product to be computed becomes:

< N, Y −1
i Πi > =

1

2π

∫ 1

0

∫ π/2

−π/2

∫ 2π

0

×

×


1

2Ω
√

ghi
Ui Gie

−iniλ

1
2Ω

√
ghi

(iVi) Gie
−iniλ

1
2Ω

Zi Gie
−iniλ



T 
−V · ∇u − ω ∂u

∂σ
+ tan θ

a
uv

−V · ∇v − ω ∂v
∂σ

− tan θ
a

uu

∂
∂σ

[V · ∇( σ2

Rγ
∂φ′

∂σ
) + ωσ ∂

∂σ
( σ

Rγ
∂φ′

∂σ
)]

 cos θdλdθdσ.

(2.39)

It is recognized that the nonlinear terms are at most the second order nonlinearity of

the state variables. Using (2.29) we substitute the following expansion of the state

variables in the nonlinear terms of (2.39):
u

v

φ′

 =
∑

i

wi


√

ghi Ui

√
ghi (−iVi)

ghi Zi

Gie
iniλ. (2.40)
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The vertical p-velocity ω may be expanded as the next form based on the continuity

equation:

ω =
∑

i

wi 2Ω

∫ σ

0

Gidσ(−iσiZi) einiλ. (2.41)

The vertical integral in (2.41) can be replaced by the first order derivative derived

from the integral of (2.18) as: ∫ σ

0

Gidσ = −ghi

Rγ
σ2dGi

dσ
. (2.42)

Moreover, the second order vertical derivative in (2.39) can be replaced by the first

order derivative derived from (2.18) as:

−σ
d

dσ

σ

Rγ

dGi

dσ
=

σ

Rγ

dGi

dσ
+

Gi

ghi

. (2.43)

With those preparations, the final form of the computation for the nonlinear inter-

action coefficients is summarized as the volume integral of the triple products of the

normal mode functions:

< N, Y −1
i Πi > = −i

∑
j

∑
k wjwk

1
2π

∫ 1

0

∫ π/2

−π/2

∫ 2π

0


Ui

Vi

Zi



T 
P1(

nkUk

cos θ
+ tan θVk) −P1

dUk

dθ
P2Uk

P1(
nkVk

cos θ
+ tan θUk) −P1

dVk

dθ
P2Vk

P3
nkZk

cos θ
−P3

dZk

dθ
−P4Zk




Uj

Vj

σjZj


ei (−ni+nj+nk)λ cos θdλdθdσ. (2.44)

Here, the triple products of the vertical structure functions are combined with the

scaling parameters as:

P1 =

√
ghj

√
ghk

2Ωa
√

ghi
GiGjGk,
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P2 =
√

ghkghj√
ghiRγ

σ2Gi
dGj

dσ
dGk

dσ
,

P3 =

√
ghj

2Ωa
GiGjGk −

√
ghjghk

2ΩaRγ
σ2Gi

dGj

dσ
dGk

dσ
,

P4 = GiGjGk + ghk

Rγ
σGiGj

dGk

dσ
+

ghj

Rγ
σGi

dGj

dσ
Gk

+(ghk

Rγ
− 1)

ghj

Rγ
σ2Gi

dGj

dσ
dGk

dσ
, (2.45)

which completes the description of the real-valued nonlinear interaction coefficients

rijk, represented by the volume integral in (2.44). The analytical derivative of the

vertical structure function is available as from Eqs. (2.25) and (2.26).

As shown in (2.44), the nonlinear interactions are non-zero only when the zonal

wavenumbers satisfy the relation ni = nj + nk. In (2.44), there are many first deriva-

tives of the normal modes which are obtainable analytically when these are evaluated

in terms of a series expansion with the Associated Legendre functions. Hence, the

computations for rijk are all analytical except for the volume integrals by means of

the Gaussian quadrature which is exact under the specified truncations of the Legen-

dre polynomials. It is worth noting that the spectral primitive equation (2.33) is as

accurate as the original one in (2.11) with approximately 1% in error for the dynamics

part.

The energy of the normal mode is defined as the square of the absolute value of

the complex expansion coefficient wnlm, multiplied by a dimensional factor chosen so

that the energy is expressed in J/m2:

E0lm =
1

4
pshm|w0lm|2, (2.46)

Enlm =
1

2
pshm|wnlm|2. (2.47)
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In order to obtain the energy balance equations for normal modes, Eqs. (2.46)

and (2.47) are differentiated with respect to time τ . Substituting (2.33) into the time

derivatives of wnlm, we obtain finally:

dEnlm

dt
= Bnlm + Cnlm + Dnlm, (2.48)

where

Bnlm = psΩhm(w∗
nlmbnlm + wnlmb∗nlm), (2.49)

Cnlm = psΩhm(w∗
nlmcnlm + wnlmc∗nlm), (2.50)

Dnlm = psΩhm(w∗
nlmdnlm + wnlmd∗

nlm). (2.51)

According to (2.48), the time change of the energy is caused by the three terms which

appear in the right hand side of (2.48). Bnlm and Cnlm are respectively associated with

the nonlinear mode-mode interactions of kinetic and available potential energies, and

Dnlm represents an energy source and sink due to the diabatic process and dissipation.
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2.4 Energetics in the Vertical Wavenumber Do-

main

2.4.1 Vertical expansion of primitive equation

In this study, the energetics of the atmospheric general circulation is analyzed

in the vertical spectral domain. The kinetic energy equation in the vertical spectral

domain can be obtained by expanding the equation of motions (Eqs. 2.1 and 2.2) using

the vertical structure functions and multiplying the wind vector. Also the available

potential energy equation can be obtained by expanding Eq. (2.10) using vertical

structure functions. Expanding the primitive equations by the vertical structure

functions and applying the boundary conditions (Eqs. 2.23 and 2.24), the primitive

equations in the vertical spectral domain are represented as follows:

∂Um

∂t
= −

∑
l,n

[
rlnm

a cos θ
Ul

∂Un

∂λ
+

rlnm

a
Vl

∂Un

∂θ
+ rln′mΩlUn − tan θ

a
rlnmUlVn

]
+fVm − 1

a cos θ

∂Am

∂λ
− Xm,(2.52)

∂Vm

∂t
= −

∑
l,n

[
rlnm

a cos θ
Ul

∂Vn

∂λ
+

rlnm

a
Vl

∂Vn

∂θ
+ rln′mΩlVn − tan θ

a
rlnmUlUn

]
−fUm − 1

a

∂Am

∂θ
− Ym,(2.53)
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1

hm

∂Am

∂t
=

∑
l,n

g

Rγ
rσ2l′n′m

[
1

a cos θ
Ul

∂An

∂λ
+

1

a
Vl

∂An

∂θ

]
+

∑
l,n

g

Rγ
(rσln′m′ + λnrlnm′)ΩlAn

− 1

a cos θ

∂Um

∂λ
− 1

a

∂Vm

∂θ
+

tan θ

a
Vm

+
1

Cpγ
(Hm +

∑
n

Hnrσn′m), (2.54)

1

a cos θ

∂Um

∂λ
− tan θ

a
Vm +

1

a

∂Vm

∂θ
+

∑
n

Ωnrn′m = 0, (2.55)

g
∑

n

rn′mAn =
αm

ps

, (2.56)

where U , V , Ω, A, and α are the vertical expansion coefficients of horizontal wind

speeds u and v, vertical p-velocity ω, geopotential φ, and specific volume α, respec-

tively. The subscripts l,n,and m are the vertical mode number. In Eqs (2.52) - (2.56),

r is an integration of the triple or double products of the vertical structure function

G:

rlnm =

∫ 1

ϵ

GlGnGmdσ, (2.57)

rln′m =

∫ 1

ϵ

Gl
∂Gn

∂σ
Gmdσ, (2.58)

rσ2l′n′m =

∫ 1

ϵ

σ2 ∂Gl

∂σ

∂Gn

∂σ
Gmdσ, (2.59)

rσln′m′ =

∫ 1

ϵ

σGl
∂Gn

∂σ

∂Gm

∂σ
dσ, (2.60)

rlnm′ =

∫ 1

ϵ

GlGn
∂Gm

∂σ
dσ, (2.61)

rσn′m =

∫ 1

ϵ

σ
∂Gn

∂σ
Gmdσ, (2.62)

rn′m =

∫ 1

ϵ

∂Gn

∂σ
Gmdσ. (2.63)
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Since σ is a nondimensional pressure, these nonlinear coefficients r become

nondimensional. The nonlinear coefficients r can be derived analytically by using

the boundary conditions, because these are the double or triple products of the ver-

tical structure functions G.

rlnm =
2∑

i,j,k=1

CilCjnCkm

bil + bjn + bkm + 1.0
(1.0 − ϵbil+bjn+bkm+1.0), (2.64)

rln′m =
2∑

i,j,k=1

CilCjnCkmbjn

bil + bjn + bkm

(1.0 − ϵbil+bjn+bkm), (2.65)

rσ2l′n′m =
2∑

i,j,k=1

CilCjnCkmbjnbil

bil + bjn + bkm + 1.0
(1.0 − ϵbil+bjn+bkm), (2.66)

rσln′m′ =
2∑

i,j,k=1

CilCjnCkmbkmbjn

bil + bjn + bkm

(1.0 − ϵbil+bjn+bkm), (2.67)

rlnm′ =
2∑

i,j,k=1

CilCjnCkmbkm

bil + bjn + bkm

(1.0 − ϵbil+bjn+bkm). (2.68)
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2.4.2 Kinetic energy equation

The kinetic energy per unit area is described as follows:

K =
ps

g

∫ 1

ϵ

u2 + v2

2
dσ, (2.69)

where K is a kinetic energy, and the units of K are J/m2. Expanding u and v with

the vertical structure functions and using the orthonormality of the vertical structure

functions,

K =
ps

g

∫ 1

ϵ

1

2

[∑
m

UmGm

∑
n

UnGn +
∑
m

VmGm

∑
n

VnGn

]
dσ,

=
ps

g

∑
m

∑
n

UmUn + VmVn

2

∫ 1

ϵ

GmGndσ,

=
ps

g

∑
m

U2
m + V 2

m

2
,

=
∑
m

Km, (2.70)

where

Km =
ps

g

U2
m + V 2

m

2
, (2.71)

and Km is the kinetic energy of each vertical mode. Differentiating Eq. (2.71) with

respect to time t, kinetic energy equation in the vertical wavenumber domain can be

obtained,
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∂Km

∂t
=

ps

g

(
Um

∂Um

∂t
+ Vm

∂Vm

∂t

)
= − ps

g

∑
l,n

[
rlnm

a cos θ

(
UmUl

∂Un

∂λ
+ VmUl

∂Vn

∂λ

)
+

rlnm

a

(
UmVl

∂Un

∂θ
+ VmVl

∂Vn

∂θ

)
− tan θ

a
rlnm

(
UmUlVn − VmUlUn

)
+rln′m

(
UmΩlUn − VmUlVn

)]
− ps

g

1

a cos θ
Um

∂Am

∂λ
− ps

g

1

a
Vm

∂Am

∂θ
− Dm. (2.72)

In this kinetic energy equation, the first to fourth terms of the right hand side show

the kinetic energy interactions among baroclinic-baroclinic and barotropic-baroclinic

components, the fifth and sixth terms show the generation of the kinetic energy, which

is converted from available potential energy, and last term shows the dissipation of

the kinetic energy, respectively.
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2.4.3 Available potential energy equation

Available potential energy is represented using the geopotential φ′ as follows:

P =
ps

g

∫ 1

ϵ

σ2

2Rγ

(
∂φ′

∂σ

)2

dσ. (2.73)

Applying the chain rule to the right hand side in Eq. (2.73), expanding the geopo-

tential deviation φ′ with the vertical structure functions, and

P =
ps

g

∫ 1

ϵ

1

2

∂

∂σ

(
σ2

Rγ
φ′ ∂φ′

∂σ

)
− φ′

2

∂

∂σ

(
σ2

Rγ

∂φ′

∂σ

)
dσ,

=
p2

s

2Rγg
φ′

s

∂φ′
s

∂σ
− 1

2g

∑
n

∑
m

AnAm

∫ 1

ϵ

Gn
∂

∂σ

(
σ2

Rγ

∂Gm

∂σ

)
dσ,

=
p2

s

2Rγg
φ′

s

∂φ′
s

∂σ
− 1

2g

∑
n

∑
m

AnAm

∫ 1

ϵ

Gn
Gm

ghm

dσ,

=
p2

s

2Rγg
φ′

s

∂φ′
s

∂σ
+

∑
m

Pm, (2.74)

where

Pm =
ps

2g2hm

A2
m, (2.75)

where φ′
s denotes the surface geopotential. P is available potential energy and Pm is

the available potential energy of each vertical mode, and the unit is J/m2. Differenti-

ating Eq. (2.75) with respect to time t, we can obtain the available potential energy

equation:

∂Pm

∂t
=

ps

g2hm

Am
∂Am

∂t
. (2.76)
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Substituting Eq. (2.54) to Eq. (2.76), we can obtain the available potential energy

equation in the vertical spectral domain:

∂Pm

∂t
=

∑
l,n

ps

g

1

Rγ
rσ2l′n′m

[
Am

a cos θ
Ul

∂An

∂λ
+

Am

a
Vl

∂An

∂θ

]
+

∑
l,n

ps

g

1

Rγ
(rσln′m′ + λnrlnm′)AmΩlAn

+
ps

g

Um

a cos θ

∂Am

∂λ
+

ps

g

Vm

a

∂Am

∂θ

+
ps

Cpγ
Am

(
Hm +

∑
n

rσn′mHn

)
, (2.77)

where the first two lines show the available potential energy interactions within the

baroclinic-baroclinic and barotropic-baroclinic components of the atmosphere, and

the third line shows the conversion to the same scale of the kinetic energy, and the

last line shows the generation of the available potential energy or dissipation due to

the radiative cooling. In this study, the last term is evaluated as a residual from the

other terms.
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2.4.4 Global energy budget equations

In order to obtain the energy budget equations, we summarize the kinetic energy

and available potential energy equations.

∂Km

∂t
= −M(m) + L(m) + C(m) − D(m), (2.78)

∂K0

∂t
=

M∑
m=1

M(m) + C(0) − D(0), (2.79)

∂Pm

∂t
= R(m) + S(m) − C(m) + G(m), (2.80)

∂P0

∂t
= −

M∑
m=1

R(m) − C(0) + G(0). (2.81)

Eqs. (2.78) - (2.81) are the energy budget equations for the baroclinic kinetic en-

ergy, the barotropic kinetic energy, the baroclinic available potential energy, and the

barotropic available potential energy, respectively. The details about each term in

these equations are described in Table 2.2. The atmospheric energy flows in the

vertical spectral domain can be examined by calculating these terms.
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CHAPTER III

DATA

In this study, JRA-25 (Japanese Re-Analysis 25 years) and JCDAS (JMA Cli-

mate Data Assimilation System) (Onogi et al. 2007) are used. JRA-25 is the first

reanalysis in Japan conducted by JMA and CRIEPI (Central Research Institute of

Electric Power Industry). The reanalysis period is from January 1979 to December

2004. The global model resolution is T106L40 (the model top is 0.4 hPa). JCDAS

is the real-time reanalysis, which is taken over the same system as JRA-25 and the

data assimilation cycle is extended up to the present. The data used in this study are

four-times daily (00, 06, 12, and 18 UTC) JRA-25 and JCDAS (Onogi et al. 2007).

The data contain meteorological variables of horizontal wind u, v, vertical p-velocity,

temperature, and geopotential φ, defined at every 2.5◦ longitude by 2.5◦ latitude grid

points over 23 mandatory vertical levels from 1000 to 0.4 hPa. The atmospheric data

at 0.4 hPa doesn’t use, because the boundary condition for top of the atmosphere is

set to 1.0 hPa. The data are interpolated on the 46 Gaussian vertical levels in the

log (p/ps) coordinate by cubic spline method.
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CHAPTER IV

RESULTS

4.1 Energetics in the Vertical Wavenumber Do-

main

In this section, the results of the energetics analysis in the vertical wavenumber

domain are introduced. The energy interactions in the vertical wavenumber domain

can be investigated by expanding the primitive equation with the vertical structure

functions. Also, the energy flow between the barotropic and baroclinic motion can

be examined by summing up the energetics terms of all baroclinic modes.
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4.1.1 Annual mean energetics

Figure 4.1 shows energy flow of kinetic energy and available potential energy

between barotropic and baroclinic component. The energy source of the atmospheric

general circulation is basically only the solar heating. It is injected as baroclinic avail-

able potential energy by the differential heating between equator and polar regions,

and its magnitude is 2.28 W/m2. The baroclinic conversion, which is the energy con-

version from available potential energy to kinetic energy by the baroclinic instability,

is 2.10 W/m2. A part of this baroclinic kinetic energy is dissipated by the viscosity or

friction, and the amount of the dissipation is 1.07 W/m2. Another part of baroclinic

kinetic energy is transformed to the barotropic motion. Finally, the barotropic kinetic

energy is dissipated by the viscosity or friction.

Figure 4.2 shows the kinetic energy and available potential energy flows in the

vertical wavenumber domain. The similar analysis in the zonal wavenumber domain,

which the Fourier expansion is used for basis function, is performed by Saltzman

(1985) and Tanaka and Kung (1988). It is found in this study that the generation

of the baroclinic available potential energy is widely distributed to the higher order

vertical modes, while the maximum injection is at the lower order vertical modes

around m = 4. The largest energy source is 0.53 W/m2 in the vertical mode m = 4.

The sum of the energy injection from the vertical modes m = 2 to 8 is 2.08 W/m2.

The barotropic available potential energy actually should be zero if the barotropic

mode means strictly vertical mean. But the vertical structure function of vertical

— 35 —



mode m = 0 doesn’t have a constant value, so the available potential energy of

the barotropic mode has a nonzero value. It is found that the interactions of the

available potential energy between baroclinic-baroclinic and barotropic-baroclinic are

very small compared to those of the kinetic energy. The baroclinic available potential

energy is directly converted to the same scale of the kinetic energy with interacting

little among them. The energy conversion of each vertical mode is mostly same

with the energy injection of corresponding vertical mode. Most of the baroclinic

conversions have positive values except for the barotropic mode (m = 0) and the first

baroclinic modes (m = 1). It is found that the baroclinic kinetic energy interacts

within baroclinic modes, and then they are transformed to the barotropic mode. The

energy interactions in higher order vertical modes have a zigzag distribution. This is

caused by the artificial rigid upper boundary where the vertical structure function in

upper atmosphere has a large amplitude.
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Figure 4.1. The kinetic and available potential energy cycle boxes for the barotropic
and baroclinic components of the Northern Hemispheric atmosphere. The units of
the energy are 105J/m2, and those of the interactions term are W/m2.
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G(m) P(m) R(m) S(m) C(m) L(m) K(m) M(m) D(m) 
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Figure 4.2. The energy flow diagram of the atmospheric general circulation in the
vertical spectral domain. The data used in this figure are the entire period of JRA-25
and JCDAS. The units of the energy are 103J/m2, and those of the interactions term
are 10−2W/m2.
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4.1.2 Seasonal mean energetics

The seasonal differences of the energy spectrum and energy interactions are

also analyzed. The energetics terms of the barotropic and baroclinic components

are listed in Table 4.1 at each season in Northern and Southern Hemispheres. The

baroclinic available potential energy Ps is very large and similar amount of energy

in the winter hemisphere, whose amount is 4.884 × 106 J/m2 and 4.769 × 106 J/m2

in Northern and Southern Hemispheres, respectively. In summer hemisphere, the

baroclinic available potential energy have minimum value compared to every season.

The value of the baroclinic conversion in winter hemisphere has also largest value

in all seasons. The barotropic-baroclinic interactions of kinetic energy have similar

values in Northern Hemisphere through the year. However in Southern Hemisphere,

they differ by seasons and the those in winter have a very small value, 0.52 W/m2 .

The magnitude of the kinetic energy is influenced by the strength of the jet

stream. The kinetic energy in the Southern Hemisphere becomes larger than that in

the Northern Hemisphere, because of the difference of the strength of the jet stream

due to the topography. The jet stream becomes strong in the winter hemisphere, and

weak in the summer hemisphere. The barotropic kinetic energy in DJF in Northern

Hemisphere (1.217 × 106 J/m2) is about three times large as the baroclinic kinetic

energy (0.386 × 106 J/m2). The ratios of the barotropic and baroclinic kinetic ener-

gies (Ks/KM) are about 0.70 and 0.50 in the Northern and Southern Hemispheres,

respectively, except the summer hemisphere. In summer hemisphere, the ratio be-
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comes larger, which means that the baroclinicity becomes stronger. Especially in the

summer in the Northern Hemisphere, the ratio reaches 1.03, the baroclinic kinetic

energy becomes stronger than the barotropic kinetic energy.

Figures 4.3 (a)-(d) show the same category of Fig. 4.1, but for the December,

January and February (DJF), March, April and May (MAM), June, July and August

(JJA), and September, October and November (SON), respectively. The available

potential energies for m = 4 in MAM and DJF are 1.051× 106 J/m2 and 1.219× 106

J/m2, respectively. On the other hand, the available potential energies for m = 4 in

JJA and SON are 0.61×106 J/m2 and 0.857×106 J/m2, respectively. The interactions

of the available potential energy and the baroclinic conversion have almost the same

values in every season. The baroclinic-baroclinic interactions of the kinetic energy

vary with the seasons, especially in the lower order vertical modes. The kinetic energy

for m = 4 receives the kinetic energy from baroclinic-baroclinic interactions, and gives

it to the barotropic mode, in every season. This is caused by the barotropization of the

tropospheric jet induced by the baroclinic instability. The kinetic energy for m = 2

also receives it from baroclinic-baroclinic interactions, and gives it to the barotropic

mode except for DJF, despite of having a local minimum kinetic energy.
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(a)  G(m) P(m) R(m) S(m) C(m) L(m) K(m) M(m) D(m) 
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Figure 4.3. As in Fig. 4.2 except for (a) DJF, (b) MAM, (c) JJA, (d) SON.
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(b)  G(m) P(m) R(m) S(m) C(m) L(m) K(m) M(m) D(m) 
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Figure 4.3. Continued.
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(c)  G(m) P(m) R(m) S(m) C(m) L(m) K(m) M(m) D(m) 
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Figure 4.3. Continued.
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(d)  G(m) P(m) R(m) S(m) C(m) L(m) K(m) M(m) D(m) 
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Figure 4.3. Continued.
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4.1.3 Horizontal distribution

Kinetic energy of the atmosphere is mostly included in the tropospheric jet

region. Chen and Yen (1983) pointed out that a three-jet structure emerges in the

winter circulation in the Northern Hemisphere. These jets appear over the east coast

of both Asia and North America, and over North Africa.

Figure 4.4 shows the kinetic energy distributions of the barotropic and baroclinic

components in the Northern Hemisphere. The atmospheric energy is mostly included

in the mid-latitude jet region. The energy peak of the baroclinic mode is located

somewhat in the west of the barotropic peak. The amount of the energy peak of the

three jet regions are listed in the Table 4.2. The Asian jet is the strongest in these

three jets, and the amounts of the barotropic and baroclinic modes are 6.2 × 106

J/m2 and 3.1 × 106 J/m2, respectively. The other two jets over North America and

North Africa are weaker than the jet over Asia. The amounts of barotropic energy

over American and African jets are 3.9 × 106 J/m2 and 2.8 × 106 J/m2, respectively.

The ratios of the barotropic kinetic energy of the North African jet and Asian jet for

the total energy are 62% and 67%, respectively. On the other hand, the ratio of the

barotropic kinetic energy of the North American jet for the total energy reaches 80%.

According to this analysis, it is found that the North American jet has the strongest

barotropy in these three jets.

Figure 4.5 shows the kinetic energy distributions of baroclinic modes from m =1

to m =8. The vertical mode m =1 has a specific distribution, which is an energy
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peak around the polar region. This distribution corresponds to the polar vortex in the

stratosphere. The energy of the Asian jet of the baroclinic mode is mostly included

in vertical mode m =4, and the maximum value of the Asian jet is 9 × 105 J/m2.

The baroclinic energy of the Asian jet is distributed around vertical mode m =4, the

energy for m =1, m =3, and m =5 is 4 × 105 J/m2, 8 × 105 J/m2, and 5 × 105

J/m2, respectively. About 85% of the Asian jet energy for baroclinic mode can be

explained by the vertical modes m =1, 3, 4, and 5.

Figure 4.6 illustrates the horizontal distributions of the kinetic energy genera-

tions for barotropic and baroclinic modes in the Northern Hemisphere. As is men-

tioned above, the integral of the kinetic energy generation of the barotropic mode

over the Northern Hemisphere is insignificant. Therefore, the baroclinic kinetic en-

ergy generation is essentially responsible for the maintenance of atmospheric kinetic

energy in the Northern Hemisphere. But the local barotropic kinetic energy gener-

ation has a considerable value. The positive kinetic energy generations are found in

the upstream side of jet from the east Asia to Japan, and negative values are found

in the downstream side of jet around the central Pacific ocean. There is no significant

kinetic energy generation in the African jet region, however there are clear kinetic

energy peaks in both barotropic and baroclinic modes. The generation over the east

coast of America is also found. However, the amount is about half less than over

the east coast of Asia. The kinetic energy generation over the Tibetan plateau has a

complex distribution because of a complex topography.

The kinetic energy converted from available potential energy in the baroclinic

— 47 —



atmosphere is transformed to kinetic energy of the barotropic mode. Figure 4.8

shows the horizontal distribution of the barotropic-baroclinic interactions of kinetic

energy in the Northern Hemisphere. The locations of the peak of the barotropic-

baroclinic interactions of kinetic energy correspond to the locations of the barotropic

kinetic energy peak, except for the African jet. The peak of the barotropic-baroclinic

interactions of kinetic energy in Asian jet is located somewhat east of the peak of the

baroclinic kinetic generation. Another peak of the barotropic-baroclinic interactions

exists in the upstream side of the Rocky Mountain. There is an interesting distribution

in the Greenland. The negative region broadens over the land of Greenland, and the

positive value distributes over the coast in the south of Greenland.
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Table 4.2. The energy of the 3 jet resions. The units of energy are 106 J/m2.

　 barotropic　 　 baroclinic　 　 total　

Africa 2.8 (62%) 1.7 (38%) 4.5

Asia 6.2 (67%) 3.1 (33%) 9.3

America 3.9 (80%) 1.3 (20%) 4.9
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Figure 4.4. The horizontal distributions of barotropic (upper) and baroclinic (bot-

tom) kinetic energies for Northern Hemisphere. The Units of energy are 105 J/m2.

The contour interval for barotropic mode is 8 × 105 J/m2 and for baroclinic mode is

4 × 105 J/m2.
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(a) vertical mode m=1
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Figure 4.5. The horizontal distributions of kinetic energy for vertical mode m =1

to 8. The units of energy are 105 J/m2. The contour intervals for m =1 to 6 are 1 ×
105 J/m2 and for m =7 and 8 are 0.5 × 105 J/m2.
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Figure 4.6. The horizontal distributions of the kinetic energy generations for

barotropic (upper) and baroclinic (bottom) modes in the Northern Hemisphere. The

units are W/m2. Contour interval is 10 W/m2.
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(a) vertical mode m=1
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Figure 4.7. The horizontal distributions of kinetic energy generation for vertical

mode m =1 to 8. The units of energy generation are W/m2. The contour intervals

for m =1 to 6 are 2 W/m2 and for m =7 and 8 are 0.5 W/m2.
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Figure 4.8. The horizontal distributions of the barotropic-baroclinic interactions of

kinetic energy in the Northern Hemisphere. The units are W/m2. Contour interval

is 5 W/m2.
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4.1.4 Difference in the vertical energy spectrum using nu-

merical and analytical vertical structure functions

Tanaka (1985) investigated energetics of the atmospheric general circulation

expanded with 3D normal mode functions, which includes the numerical vertical

structure functions. The numerical vertical structure functions have a large aliasing

in the higher order vertical modes (Fig. 2.1b). Figure 4.9 shows the total energy

spectrum in the vertical wavenumber domain expanded by the numerical vertical

structure functions, where the total energy is the summation of the kinetic energy

and available potential energy. Although the sum of the total energy represents the

global integral for the total energy over the sphere, the spectrum is highly irregular

indicating three peaks at barotropic mode, 2.147 (m=8), and 23.908 (higher order

modes), respectively. A notable energy gap is seen at 3.413 (m=12) which may

corresponds to the Nyquist wavenumber.

In contrast, Fig. (4.10) shows the kinetic and available potential energy spectra

expanded by the analytical vertical structure functions for JRA-25. The vertical

energy spectrum is basically red spectrum in that the total energy is high in lower

order modes and low in higher order modes. There is a marked energy peak at the

vertical wavenumber 1.8266 (m=4) for both kinetic energy and available potential

energy. The half vertical wavelength of the vertical mode m=4 is about 13.7 km,

which is corresponds to the scale of the thickness of the troposphere. This energy

peak is caused by the vertical structure function for m=4 having a maximum at

about 200 hPa and the opposite sign at low troposphere, as seen in Fig. 2.2(a).
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The tropospheric jet around upper troposphere may cause the secondary maximum

of kinetic energy. The baroclinic structure of geopotential deviation from the global

mean, which has an opposite sign at low and high troposphere, may be reflected at

m=4. The total energy at this peak is mostly explained by the available potential

energy, whereas the barotropic energy is mostly contained in kinetic energy. The

kinetic energy spectrum has an interesting slope in the higher wavenumber than the

scale of the second energy peak. It is found in this study that the kinetic energy

obeys −3 power of the non-dimensional vertical wavenumber µm in common with the

−3 power law in the horizontal wavenumber domain.

The result obtained in this study shows significant contrast with the vertical

energy spectrum by Tanaka (1985) and Tanaka and Kung (1988), where the spectrum

in the higher order vertical modes appears to be zigzag as in Fig. 4.9 by the influence

of aliasing due to the numerical solutions.
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Figure 4.9. The vertical energy spectrum expanded by the numerical vertical struc-

ture functions. The data period are from 1 Jan 1979 to 31 Jan 1979. The units of

energy are J/m2.
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Figure 4.10. Energy spectra of kinetic and available potential energies expanded by

the analytical vertical structure functions. The data period are from 1979 to 2007.

The units of energy are J/m2.
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4.2 3D Normal Mode Energetics

4.2.1 Energy spectrum of the barotropic atmosphere

Tanaka et al. (2004) investigated the characteristic of the energy spectrum

for barotropic motion in the phase speed domain. The spectral characteristic for the

barotropic component in the phase speed domain was argued by Tanaka et al. (2004),

by using a criterion, which is a Rossby wave breaks down when a local meridional

gradient of the potential vorticity is negative, i.e., ∂q/∂y < 0, somewhere in the

domain. Using this criterion, they derived that the energy spectrum is proportional

to c2 (Fig. 4.11) and also the barotropic energy spectrum of the general circulation

E can be represented as:

E = mc2, (4.1)

where m is the total mass of the atmosphere for unit area.

Figure 4.11 illustrates the barotropic energy spectrum Ei and the energy flux

FWi in the phase speed domain (see Terasaki and Tanaka 2007). The energy levels

are connected by the dotted line for the same zonal wavenumber n with different

meridional mode number l. The red line in the figure denotes the spectral slope of E =

mc2 derived by Tanaka et al. (2004) from the criterion of the Rossby wave saturation,

∂q/∂y < 0 (Garcia, 1991). The energy spectrum indicates the two different regimes

with distinct slopes for small ci and large ci. According to this figure, it is found

that the energy spectrum obeys approximately the 2 power law of the phase speed of
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Rossby wave for small ci in the turbulent regime Ri > 1.

The atmospheric energy is converted from the baroclinic to the barotropic com-

ponents at the synoptic scale motions when the baroclinicity is removed by the baro-

clinic instability. The energy injected at the synoptic scale (ci=0.004) cascades up to

the larger scale obeying the 2 power law of the phase speed ci (Tanaka et al. 2004).

The up-scale energy cascade is, however, arrested at the Rhines scale CR, beyond

which the linear term dominates (Ri < 1), due to the increased σ or c. The en-

ergy spectrum is much steeper than the c2 in the short wave range where the energy

cascades down.

The characteristic spectral slope in the barotropic atmosphere can be obtained

from eq.(4.1) by applying the dispersion relation of Rossby wave. The phase speed of

the Rossby wave is given by a total wavenumber k on the β plane,

c = − β

k2
. (4.2)

If we substitute this relation into Eq. (4.1), we obtain the following relation,

E(k) = mβ2k−4. (4.3)

If we assume the isotropy for zonal wind u and the meridional wind v over the range

of synoptic to short waves, the energy spectrum can be expressed as a function of

zonal wavenumber n instead of total wavenumber k.

E(n) ≅ mβ2n−4. (4.4)

According to Eq. (4.4), it is inferred that the energy spectrum in the zonal wavenum-

ber domain obeys −4 power of the zonal wavenumber.
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Figure 4.12 illustrates the zonal energy spectrum of Rossby mode and gravity

mode for the barotropic component. The red line in the figure denotes the spectral

slope of the −4 power of the zonal wavenumber inferred by the theory. According to

the result, it is found that the observed zonal energy spectrum exactly obeys the −4

power of the zonal wavenumber for synoptic scale motions (n = 9 − 30). The zonal

energy spectrum for planetary scale is less steeper than that for synoptic scale, and

that beyond n = 35 is much steeper than the −4 power law.

The energy level of the gravity mode for barotropic component is very small

compared to the Rossby mode. The eddy energy peak exists in the zonal wavenumber

n = 2. The spectral slope is apparently different from that of the Rossby wave

saturation theory in this range.

Figure 4.13 illustrates the zonal energy spectrum of Rossby mode and gravity

mode as in Fig. 4.12, but for the baroclinic component. The red and blue lines in the

figure denote the spectral slope of the −3 and −4 powers of the zonal wavenumber.

According to the result, it is confirmed that the observed zonal energy spectrum

approximately obeys the −3 power of the zonal wavenumber for synoptic scale motions

as is consistent with previous numerous studies. Hence, the characteristic −4 power

law is specific only to the barotropic component of the atmosphere.

In Figs. 4.12 and 4.13, the energy slopes for the higher wavenumber of the

Rossby mode do not obey the specific laws, but they become steeper.
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Figure 4.11. The total energy spectrum Ei and the energy flux associated with the

nonlinear wave-wave interactions for the barotropic component in the dimensionless

phase speed of the Rossby mode ci evaluated for the 22 years of the JRA-25 during

the winter DJF. Energy levels are connected by the dotted lines for the same zonal

wavenumber n with the different meridional mode numbers l. The red line of the

E = ac2 represents the energy slope derived from the condition of the Rossby wave

breaking, ∂q/∂y < 0.
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Figure 4.12. The eddy energy spectrum of the Rossby and gravity modes for the

barotropic component as a function of the zonal wavenumber evaluated for the 22

years of the JRA-25 during the winter DJF. Circles and square denote the energy

for Rossby and gravity modes, respectively. The solid line in the figure denotes the

spectral slope of −4 power derived from Eq. (4.4).
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Figure 4.13. As in Fig. 4.12, but for the sum of the batoropic and baroclinic

components of the atmosphere. The selod lines in the figure denotes the spectral

slope of −3 power.
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4.2.2 Energy interactions

Energy interactions in the zonal wavenumber domain and in the vertical spectral

domain are analyzed in this subsection based on (2.48). Figure 4.14 illustrates the

nonlinear interactions of kinetic energy and available potential energy in the zonal

wavenumber domain (n = 1 − 25) by (a) summing all vertical modes (m = 0 − 22),

(b) for the barotropic mode (m = 0), and (c) for the baroclinic modes (m = 1 − 22),

respectively. Similarly, Fig. 4.15 illustrates the nonlinear interactions in the vertical

mode domain (m = 0− 22) by (a) summing all zonal wavenumbers (n = 0− 50), (b)

for zonal component (n = 0), and (c) for all eddy components (n = 1 − 50). Those

energy interactions are supposed to vanish when summed over the all wavenumbers

due to the energy conservation law. However, the summation of the available potential

energy interactions, term C, did not vanish by some assumptions involved and the

accumulation of computational error. We thus have adjusted the errors at the zonal

component by redistributing it linearly as a function of the vertical and meridional

wavenumbers to meet the conservation law. Such an adjustment was not necessary

for the term B.

According to the result of the analysis, energy of the general circulation of

the atmosphere is first supplied at the available potential energy of zonal baroclinic

components by the differential heating of the solar radiation, as indicated by negative

values of C in Fig. 4.15 (b). The negative values are balanced by positive values of the

interactions C at eddy baroclinic components as seen in Fig. 4.15 (c) and in Fig. 4.14
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(c). This means that the zonal available potential energy is transformed into the eddy

available potential energy, both of which are contained in the baroclinic component

of the atmosphere. As seen in Fig. 4.14 (c), the eddy available potential energy is

converted into the eddy kinetic energy as seen by the opposite signs of B and C. It

is also found that the baroclinic eddy kinetic energy is transformed into barotropic

kinetic energy as seen by positive B in Fig. 4.14 (b) and in Fig. 4.15 (c). The eddy

barotropic energy accumulated at synoptic to planetary waves is finally transformed

to zonal barotropic energy as seen by positive B in Fig. 4.15 (b). The kinetic energy

supplied to barotropic mode is dissipated by surface friction and viscosity. These

results are consistent with Tanaka and Kung (1988), which have been analyzed using

the numerical vertical structure functions.

The effect of using the analytical vertical structure functions is found at the

nonlinear interactions for the higher order vertical modes. Small but consistently

negative values of the available potential energy interactions over m > 6 in Fig. 4.15

(b) indicate that an energy source of the atmospheric general circulation exists in

higher order vertical modes. There are some available potential energy source at m =

1 and 3. The kinetic energy interactions are hardly seen in the higher order vertical

modes (Figs. 4.15b and c).

Figure 4.16 shows the energy flux of kinetic energy (FB), available potential

energy (FC), and total energy (FN) in the vertical wavenumber domain. Negative

and positive values indicate upscale and downscale cascades, respectively. It is shown

that energy flux basically shows negative value, indicating dominant inverse energy
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cascade from smaller vertical scale to larger vertical scale motions. As a result, the

atmospheric energy is transformed from baroclinic to barotropic components. The

kinetic energy flux is the largest at the vertical wavenumber 0.00125 (m=2), and peak

of the available potential energy flux is seen at 0.01186 (m=7). It is suggested from

these analyses using the analytical vertical structure functions that the energy inter-

actions are performed by relatively larger vertical scale motions for the kinetic energy,

whereas there is a complex structure of the available potential energy interactions in

the higher order vertical modes.
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Figure 4.14. Energy Interactions in the wavenumber domain for (a) m = 0 − 22,

(b) m = 0 and (c) m = 1− 22. B: Interactions of kinetic energy, C: those of available

potential energy.
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Figure 4.15. Energy Interactions in the vertical mode domain for (a) n = 0 − 50,

(b) n = 0 and (c) n = 1 − 50.
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Figure 4.16. Vertical energy fluxes of kinetic energy, available potential energy, and

total energy as a function of the inverse of equivalent heights.
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CHAPTER V

DISCUSSION

In order to investigate the atmospheric energetics in spectral domain, it is very

important what basis functions are chosen. In general, Fourier expansion is used for

the basis function to zonal direction, which is constituted by trigonometric functions.

The Hough vector functions are used as the meridional basis functions. Kasahara

and Puri (1981) obtained the orthonormal eigensolution to the vertical structure

equation. But the vertical structure functions have a large aliasing in higher order

vertical modes because it is solved numerically (Fig. 2.1). In this study, we used

the analytical vertical structure functions obtained by assuming a constant static

stability parameter. In general, the static stability in the stratosphere is more larger

than that in the troposphere, it might not be good to assume it as a constant. But

the author supposes that it is better to use analytical solution than to use numerical

solution, because the energy spectrum calculated with numerical solution has much

aliasing in the large vertical modes (Fig. 4.9). The vertical wavelength is determined

by the vertical wavenumber, however the vertical wavelength of each vertical mode

is affected by the pressure of the top of the atmosphere. It should be noticed that

the vertical wavelength is different at the same vertical wavenumber if the different

pressure of the top atmosphere is set.

The energy spectrum in the horizontal wavenumber domain has been investi-

gated by many researchers. The -3 power law of the energy spectrum in the horizontal
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wavenumber domain has widely known. There are some theories about this −3 spec-

tral slope in the horizontal wavenumber. Tung and Orland (2003) suggested that the

energy spectrum obeys −3 power law in the inertial subrange, which has no energy

source region. Kraichnan (1967) predicted a −3 power law for 2D, isotropic and

homogeneous turbulence in a forward enstrophy cascading inertial subrange on the

short-wave side of the scale of energy injection. In this study, the energy spectrum in

the vertical wavenumber domain was investigated using the analytical vertical struc-

ture functions. It is found that the vertical kinetic energy spectrum obeys the law of

−3 power of the vertical wavenumber. This −3 power spectrum can not be obtained

due to the aliasing in the higher vertical wavenumber, if the numerical vertical struc-

ture functions are used. There is no theory about the −3 power law of the energy

spectrum in the vertical wavenumber domain. There must be some theorem for this

specific spectrum in the vertical wavenumber domain, such as 2 power law of the

phase speed which was derived from Rossby wave saturation theory (Tanaka et al.

2004).

In this study, a new analysis method for energy cycle in the vertical wavenumber

domain is suggested using the analytical vertical structure functions. The baroclinic-

baroclinic interaction terms of kinetic and available potential energies vanish when

they are summed up with all vertical modes, and the energy cycle between barotropic

(mean) and baroclinic (shear) can be estimated. The calculation of interaction terms

is very difficult, because these terms are affected by the boundary condition and the

calculation method, and so on. The energy of the atmospheric general circulation
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is mostly included in the troposphere because the density above the stratosphere is

much less than in the troposphere. The half-wavelength of the vertical mode m =4

is about 13.7km which is one of the baroclinic modes. This scale corresponds to

the scale of the tropospheric baroclinic structure which has a opposite sign at lower

troposphere and upper troposphere. The vertical modes around m =4, for example

m =3 and m =5, have similar vertical scales, so the baroclinic kinetin energy and

available potential energy around the vertical mode m =4 has as much energy as

m =4. It is suggested that the energy of the polar vortex in the stratosphere is

indicated in m =1 which has a large amplitude and scale in the stratosphere. The

m =1 of the kinetic energy receives energy by the barotropic-baroclinic interactions.
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CHAPTER VI

CONCLUSIONS

In this study, the atmospheric energetics in the vertical wavenumber are ana-

lyzed. The analytical vertical structure functions are used as the basis functions in

the vertical direction. The analytical vertical structure functions can be obtained by

assuming the static stability parameter γ to be constant value. The energy spectrum

and the energy interactions of the atmospheric general circulation are also analyzed,

using the expansion in three dimensional normal mode functions. The data used in

this study are JRA-25 and JCDAS from 1979 to 2007.

The vertical expansion is applied to a system of the primitive equations in

consideration of the proper boundary conditions, and the kinetic energy and available

potential energy equations are derived. Using this analysis method, we can examine

the interactions of kinetic and available potential energies among baroclinic modes.

According to the result of the analysis in dividing the atmospheric data into

vertical mean (barotropic) and its shear (baroclinic), we obtain the energy circulation

of the atmospheric general circulation. This result is consistent with previous studies.

According to the result of the analysis in the vertical wavenumber domain, it

is found that the baroclinic kinetic energy interacts within the baroclinic modes, and

then they are transformed to the barotropic mode. The interactions for available

potential energy are very small compared to that for the kinetic energy.
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According to the result of the energy spectrum, the vertical energy spectrum is

found to be red spectrum with characteristic spectral slopes of -3 power of the ver-

tical wavenumber for kinetic energy. There is a marked energy peak at the vertical

wavenumber 1.8266 for both kinetic energy and available potential energy. The tropo-

spheric jet near 200 hPa may cause the secondary maximum of the kinetic energy at

the vertical structure function for m=4, having a maximum at about 200 hPa and the

opposite sign at lower troposphere. The baroclinic structure of geopotential deviation

from the global mean, which has an opposite sign at low and high troposphere, may

be reflected at m=4. The barotropic energy is mostly explained by kinetic energy,

whereas the higher order vertical modes are mostly explained by available potential

energy.

The result obtained in this study shows significant contrast with the vertical

energy spectrum by Tanaka (1985) and Tanaka and Kung (1988), where the spectrum

in the higher order vertical modes appears to be zigzag by the influence of aliasing in

the vertical structure functions.

According to the result for the energy interactions, energy flows are represented

from the zonal baroclinic energy to eddy baroclinic energy to eddy barotropic energy,

and finally to zonal barotropic energy, as is consistent with the result by Tanaka and

Kung (1988). It is found in this study using the analytical vertical structure func-

tions that there are small but consistently negative values of nonlinear interactions of

available potential energy at zonal baroclinic components in the higher order vertical

modes. The result suggests that the source of available potential energy in the zonal
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field is distributed in wide range of the vertical spectrum at large vertical wavenum-

bers. The energy source of the atmospheric general circulation is basically explained

by the solar radiation, which is transformed to sensible and latent heat. The former

has a peak near the surface while the latter has a peak in the mid troposphere. In

order to represent the diabatic heating by the sensible heat near the surface, not

only the lower order modes but also the higher order modes of the vertical structure

functions are required.

The analysis of vertical energy flux shows that the energy injected at the higher

order baroclinic modes by the solar radiation is transformed to lower order vertical

modes, ultimately to barotropic mode.

Most of the previous 2D turbulence experiments are conducted under no energy

source or at most with a point-wise energy source in order to examine the inertial

subrange. Welch and Tung (1998) examined the energy slope with two-level quasi

geostrophic model, which is a baroclinic model. Basdevant et al. (1981) investigated

using the barotropic nondivergent model with forcing. They obtained the -4 power

spectrum with their model which has a rotation and baroclinic instability as a forcing.

It is similar to our saturation theory of the Rossby wave. But they did not mention

why the energy slope becomes -4 power law for the barotropic component.

In this study, the characteristics of the energy slope for the barotropic compo-

nent is examined in the framework of the 3D normal mode decomposition. The energy

slope of E = mc2 was derived by Tanaka et al. (2004) based on the criterion of the
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Rossby wave breaking. The wave breaking occurs when the local meridional gradient

of the potential vorticity is negative, i.e., ∂q/∂y < 0, somewhere in the domain.

In this study, it is derived that the energy spectrum for the barotropic com-

ponent obeys the −4 power of zonal wavenumber, because the phase speed of the

Rossby wave c can be replaced with total wavenumber, c = −β/k2, and if we assume

the isotropy for zonal wind u and the meridional wind v over the range of synoptic

to short waves, the energy spectrum can be expressed as a function of n instead of k.

This theoretical law of the energy slope is examined by analyzing with JRA-25.

According to the result of the analysis, the spectral slope agrees quite well with

the −4 power law for the barotropic component of the atmosphere. It is, however,

confirmed that the spectrum obeys the −3 power law as in previous studies for the

baroclinic atmosphere. It is also found that the barotropic energy spectrum obeys

the saturation theory where energy cascades up, but it does not obey where energy

cascades down.

— 77 —



ACKNOWLEDGMENTS

First of all, I would like to express special appreciation to Prof. Hiroshi L.

Tanaka, Center for Computational Sciences, University of Tsukuba, for his variable

comments and encouragements. I am also thankful to Profs. F. Kimura, Y. Hayashi,

A. Kitoh, K. Ueno, H. Ueda, and H. Kusaka for variable comments and suggestions.

I am most grateful to Dr. Watarai in Rissho Unversity and Dr. Matsueda in MRI-

JMA for their various advice on my study. I am grateful to all other students and

staff of the Climatology and Meteorology Group, the University of Tsukuba, for their

comments and supports. Finally, I am most thankful to my family for their support

and understanding.

— 78 —



REFERENCES

Boer. G. J. and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in

the atmosphere. J. Atmos. Sci., 40, 164–184.

Basdevant, C., Legras, R. Sadourny, and M. Beland, 1981: A Study of Barotropic

Model Flows: Intermittency, Waves and Predictability. J. Atmos. Sci., 38,

2305–2326.

Ferdinand, B., 1981: Three-dimensional scaling and structure of atmospheric ener-

getics. J. Atmos. Sci., 38, 52–68.

Garcia, R. R., 1991: Parameterization of planetary wave breaking in the middle

atmosphere, J. Atmos. Sci., 48, 1405–1419.

Kasahara, A., 1976: Normal modes of ultralong waves in the atmosphere. Mon.

Wea. Rev., 104, 669–690.

Kasahara, A. and K. Puri, 1981: Spectral representation of three dimensional global

data by expansion in normal mode functions. Mon. Wea. Rev., 109, 37–51.

Kasahara, A., 1984: The linear response of a stratified global atmosphere to tropical

thermal forcing. J. Atmos. Sci., 41, 2217–2237.

Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence, Phys, Fluids.,

10, 1417–1423.

Lorenz, E. N., 1955: Available potential energy and the maintenance of the general

circulation. Tellus, 7, 157–167.

— 79 —



Nastrom, G. D., K. S. Gage, and W. H. Jaspersom, 1984: The atmospheric kinetic

energy spectrum, 100 - 104 km, Nature, 310, 36–38.

Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T.

Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada,

K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira, 2007: The JRA-25

Reanalysis. J. Meteorol. Soc. Japan, 85, 369–432.

Saltzman, B., 1957: Equations governing the energetics of the larger scales of atmo-

spheric turbulence in the domain of wavenumber. J. Meteor., 14, 513–523.

Sasaki, Y. K., and L. P. Chang, 1985: Numerical solution of the vertical structure

equation in the normal mode method. Mon. Wea. Rev., 113, 782–793.

Shepherd, T., 1987: A spectral view of nonlinear fluxes and stationary-transient

interaction in the atmosphere. J. Atmos. Sci., 44, 1166–1178.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations.

Mon. Wea. Rev., 91, 99–165.

Stone, P., 1978: Baroclinic adjustment, J. Atmos. Sci., 35, 561–571.

Swarztrauber, P. N. and A. Kasahara, 1985: The vector harmonic analysis of

Laplace’s tidal equation. SIAM J. Sci. Stat. Comput., 6, 464–491.

Tanaka, H.L., 1985: Global energetics analysis by expansion into three dimensional

normal mode functions during the FGGE winter. J. Meteor. Soc. Japan, 63,

180–200.

Tanaka. H. L and E. C. Kung, 1988: Normal mode energetics of the general circu-

— 80 —



lation during the FGGE year. J. Atmos. Sci., 45, 3723–3736.

Tanaka, H. L., Y. Watarai, and T. Kanda, 2004: Energy spectrum proportional to

the squared phase speed of Rossby modes in the general circulation of the at-

mosphere. Geophys. Res. Letters, 31(13), 13109, doi: 10.1029/2004GL019826.

Terasaki, K. and H. L. Tanaka, 2007a: Barotropic energy spectrum by the Rossby

wavesaturation in the zonal wavenumber domain. SOLA, 3, 25-28.

Terasaki, K. and H. L. Tanaka, 2007b: An Analysis of the 3-D Atmospheric Energy

Spectra and Interactions using Analytical Vertical Structure Functions and Two

Reanalyses. J. Meteor. Soc. Japan, 85, 785–796.

Tung, K. K. and W. W. Orland, 2003: The k−3 and k−5/3 energy spectrum of at-

mospheric turbulence: Quasigeostrophic two-level model simulation, J. Atmos.

Sci., 60, 824–835.

Welch. W. T. and K. K. Tung, 1988: On the equilibrium spectrum of transient

waves in the atmosphere. J. Atmos. Sci., 55, 2833–2851.

Wiin-Nielsen. A., 1962: On transformation of kinetic energy between the vertical

shear flow and the vertical mean flow in the atmosphere. Mon. Wea. Rev., 90,

311–323.

Wiin-Nielsen. A. and M. Drake, 1965: On the energy exchange between the baro-

clinic and batropic components of atmospheric flow. Mon. Wea. Rev., 93,

73–92.

William, E. and Richard, C, 2005: Elementary Differential Equations and Boundary

— 81 —



value problems Eighth Edition, 273–279.
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