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Abstract

Recently, the ensemble forecast has become a major component of operational global

weather prediction systems. TIGGE (THORPEX Interactive Grand Global Ensemble) is

a part of WWRP (World Weather Research Programme) to accelerate the improvements

in the accuracy of one-day to two-week high-impact weather forecasts. The TIGGE has

enabled us to get operational medium-range ensemble forecast data near real time.

In this study, first, the overall intercomparisons of five operational medium-range

ensembles: CMC, ECMWF, JMA, NCEP, and UKMO, were performed. The forecast skill

was evaluated using Root Mean Square Error (RMSE) for 500 hPa geopotential height

over the Northern Hemisphere (NH, 20◦N–90◦N) from December 2006 to November 2007.

It was found in the control run and ensemble mean forecast that the ECMWF has the

best forecast skill for almost all seasons and almost all forecast ranges. In particular,

the ECMWF is far superior to the other centers in the early forecast range (day 0–3).

The spread of the ECMWF showed good agreement with the RMSE of the ECMWF for

almost all forecast ranges. On the other hand, it was found that the performance of the

CMC, JMA, NCEP, and UKMO ensemble mean is almost comparable with each other.

Their skills can be considered as the second-best.

Second, Multi-Center Grand Ensembles (MCGEs) were constructed using five medium-

range ensemble forecasts: CMC, ECMWF, JMA, NCEP, and UKMO. The forecast per-

formance of the MCGEs relative to the ECMWF ensemble was investigated using the

seasonal RMSE and Ranked Probability Score (RPS) for 500 hPa height over the the

Northern Hemisphere from December 2006 to November 2007. It was found in the de-

terministic and probabilistic verifications that the MCGEs can outperform the ECMWF

ensemble at least in the medium forecast range (day 6–9) for all seasons. The forecast

time when the MCGEs first outperform the ECMWF ensemble is somewhat different

depending on the season. During the northern summer, the advantage of the MCGEs

appears as early as at +4 day forecast time. The improvements in the RMSE and RPS

are several percentage points in the medium forecast range. These are almost comparable

with the rate of improvement in a single-center ensemble forecast during the latest few
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years. Although the ensemble spread of the MCGE was larger than the RMSE in the early

forecast range, ensemble spread of the MCGE showed good agreement with the RMSE

since the medium-range forecast range.

Third, an analysis of atmospheric blocking was performed using ensemble forecast

data, ensemble-based simple sensitivity analysis, and multi-analysis ensemble forecasts.

The ensemble forecast initialized at 12 UTC on 10th December 2005 was a very interesting

case. All NCEP members were not able to predict the location of the blocking occurred

on 15th December 2005 correctly, whereas almost all JMA members were able to predict

it correctly. According to the multi-analysis ensemble forecasts and ensemble-based sen-

sitivity analysis, it was found that the collective mis-prediction mainly resulted from the

NCEP control analysis over the central North Pacific at 12 UTC on 10th December al-

though the decreases of the imperfection of the model formulation were recognized. In the

sensitivity area, there was a cut-off cyclone. The difference between the JMA and NCEP

control analyses around the cyclone was relatively larger than the other areas. Due to

the lack of the effective initial perturbation in the NCEP members, the large uncertainty

around the cyclone was not able to be reduced. This led to the collective mis-prediction.

In fact, the multi-analysis ensemble forecasts from the NCEP analyses with the regionally

amplified initial perturbation showed the improvement in the RMSE over the blocking

region without the degradation of the forecast skill over the Northern Hemisphere. These

results indicate that the sensitivity area was essential for the prediction of the blocking.

The global amplification of the initial perturbations led to the decrease of the RMSE

over the blocking region and the increase of the RMSE over the Northern Hemisphere.

These results suggested that the excessive amplification of the initial perturbation over

non-sensitivity area is undesirable and that the regional amplification technique can lead

to better forecast without the degradation of the forecast over the other area. The result

in this study shows that such a case dependent estimates may really have value as com-

pared to climatologically based rescaling that is used widely.

Keywords:　THORPEX, TIGGE, medium-range ensemble forecast, Multi-Center Grand

Ensemble, high-impact weather, ensemble-based sensitivity analysis, multi-analysis en-

semble
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Chapter 1

Introduction

1.1 Ensemble forecast

Recently, the ensemble forecast has become a major component of operational global

weather prediction systems, and has drawn more attention in various timescales, such

as short-, medium-, and long-ranges for both operational and research purposes. The

ensemble simulation also adopted in the global warming research in order to estimate the

uncertainty of future climate.

In the ensemble forecasts, several model forecasts are performed by introducing

perturbations in the initial conditions or in the models themselves. Ensemble forecast is

employed to achieve two main goals: the first one is to provide that an ensemble average

forecast beyond the first few days is more accurate than individual forecast, because the

components of the forecast that are most uncertain tend to be averaged out. The second

and more important goal is to provide forecasters with an estimation of the reliability of

the forecast, which, because of changes in atmospheric predictability, varies from day to

day and from region to region (Kalnay 2003).

As of October 2006, about 12 and 5 meteorological operational and research centers

all over the world operate their own global and regional ensemble prediction system, re-

spectively (WMO 2007). These ensemble systems differ in the resolution of the analysis

and forecast modes, in the initial perturbation method, in the schemes used to parame-

terize physical processes, in the ensemble size, and in the forecast length. The long-range
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ensemble forecast is also operated in about 10 operational centers under the different

systems.

In December 1992, the European Center for Medium-Range Weather Forecasts

(ECMWF; Molteni et al. 1996) and the National Centers for Environmental Predic-

tion (NCEP; Toth and Kalnay 1997) employed the ensemble techniques for operational

medium-range forecast for the first time followed by other Numerical Weather Prediction

(NWP) centers: the Japan Meteorological Agency (JMA; JMA 2007), the Canadian Me-

teorological Center (CMC; Houtekamer et al. 1996), the Bureau of Meteorology (BOM;

Bourke et al. 2004), and so on. The details of each medium-range Ensemble Prediction

System (EPS) as of December 2007 are summarized in Table 1.1. Each NWP center

adopts different EPS. This fact depends on the computer resources, the development

cost, the aim of the EPS in each NWP center, and so on. For example, NCEP performs

medium-range ensemble forecast 4 times per day to cover the lack of ensemble size per

run due to computer resource limitations. Also, JMA has changed the initial perturbation

method from the Bred Vector (BV) method to the Singular Vector (SV) method on 21st

November 2007 in order to gain the more useful information from the own EPS. Each

EPS is sometimes changed along with the changes of their computer resources. Many

researches on the basic performance of the EPS have been performed with a view to the

operational use. For example, the impact of model resolution on the performance of an

EPS was investigated (Buizza et al. 2003, 1998; Mullen et al. 2002; Pellerin et al. 2003;

Szunyogh and Toth 2002) mainly along with the update of the computer resources. Also,

the impact of ensemble size was investigated (Buizza and Palmer 1998; Buizza et al.

1998; Mitchell and Houtekamer 2002; Mullen et al. 2002; Richardson 2001b). Based on

these researches, own computer resources, and own development cost, each NWP center

constructs a better, but not the best, EPS at least for oneself.

Intercomparisons of these EPSs were done by Buizza et al. (2005) for the CMC,

ECMWF, and NCEP over the Northern Hemisphere (NH) from May to July 2002, Bourke

et al. (2004) for the BOM and ECMWF over the Southern Hemisphere from 2nd April

to 31st August 2001, Matsueda et al. (2006) for the CMC, JMA, and NCEP over the

NH in September 2005, Froude et al. (2007) for the ECMWF and NCEP against the
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extratropical storm tracks from 6th January to 5th April 2005, and Matsueda et al.

(2007) for the CMC, JMA, and NCEP over the NH from August 2005 to February 2006.

The forecast errors in the short- and medium-range forecasts are mainly affected by

the chaotic nature of the atmosphere, the uncertainties of the initial conditions, and the

imperfection of the numerical model.

The initial perturbation method is one of the important factors in determining the

EPS performance. The basic concept of the initial perturbation method is that uncertain-

ties included in the initial data are reduced by introducing the initial perturbations. The

major initial perturbation methods are the Lagged Average Forecasting (LAF) method,

the total energy norm based SV method, the BV method, the Perturbed Observation

(PO) method, the Ensemble Kalman Filter (EnKF) method, and the Ensemble Trans-

form Kalman Filter (ETKF) method, the Ensemble Transform (ET) method, and the ET

with Rescaling (ETR) method. The LAF, SV, BV, and PO methods are recognized as

the first generation methods. The EnKF, ETKF, ET, and ETR methods are recognized

as the second generation methods.

The LAF method is the simplest initial perturbation method (Hoffman and Kalnay

1983). This method has been basically used in the long-range forecasts and climate

researches. This method uses the forecasts initialized at different times. In the medium-

range ensemble forecast, the LAF method is not used alone. The LAF method is not

used alone but used with the following initial perturbation methods, which are based

on dynamical and mathematical concepts. This method is effective in case that the

ensemble size by the following initial perturbation methods is not enough because of

the limitation of the computer resources. This method is adopted at the BOM, CMC,

Centro de Previsão de Tempo e Estudos Climáticos (CPTEC; Ferreira 2007), ECMWF,

Korean Meteorological Administration (KMA; Park 2007), NCEP, and United Kingdom

Meteorological Office (UKMO; Bowler et al. 2008) as of December 2007.

The SV method is first introduced at the ECMWF (Buzza and Palmer 1995; Molteni

et al. 1996). The SV method assumes that each possible pattern with unit total energy in

the three dimensional and multivariate space of a numerical model is equally likely to the

3



error pattern in a numerical analysis. Sampling out of the assumed uniform distribution

is done through the SV method that results in perturbations that produce the maximum

linear growth over a pre-specified optimization period (typically, 1 to 2 days). Growth and

perturbation patterns beyond a transitional period are determined by the state dependent

local Lyapunov characteristics of the system (supporting sustainable growth), while those

during the transitional period are strongly influenced by the choice of the norm used in the

definition of SVs. The SV method uses an adjoint (Errico 1997) and linear tangent of the

forecast model to determine the growth directions, and the perturbations are designed in

this subspace. This method is adopted at the BOM, China Meteorological Administration

(CMA; WMO 2007), ECMWF, and JMA as of December 2007.

Toth and Kalnay (1993, 1997) introduced the BV method at the NCEP. The BV

method is based on the argument that fast-growing perturbations develop naturally in a

data assimilation cycle and will continue to grow as short- and medium-range forecast er-

ror. The BV method generates perturbations in directions where past forecast errors have

grown rapidly. To simulate the error breeding process in an analysis cycle, a perturbation

field in a breeding cycle is dynamically cycled through the use of two non-linear forecast

integrations, where the difference between the two forecasts are periodically rescaled and

then repositioned onto consecutive analysis fields (Toth and Kalnay 1993). Although the

SV method needs an adjoint code (Ericco 1997), the BV method generates initial per-

turbations without it. So, it is easy to introduce the BV into own EPS. This method is

adopted at the Fleet Numerical Meteorology and Oceanography Center (FNMOC; WMO

2007) and KMA as of December 2007.

The PO method (Houtekamer et al. 1996), used at the CMC, relied on an Optimal

Interpolation (OI) analysis scheme. This was due to the fact that the OI scheme was

much cheaper to run. In addition, the POs may introduce undesirable noise into the

forecast (Whitaker and Hamill 2002). As most observations are perturbed by a simulated

observational error, followed by multiple numerical analyses, perturbations with the PO

method represent random samples from the suboptimal analysis PDF, containing both

fast growing and neutral/decaying perturbation patterns with realistic amplitude. Since

the PO method samples analysis error, therefore it is closer to a second generation method
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than other first generation methods.

The PO and BV methods are related in that they aim at providing a random sample

of analysis errors. The resulting perturbations generated by the BV method are similar to

those by the PO method except that perturbations represent only the growing components

and ignore the neutral and decaying components of the analysis error. The BV method is

also related to the SV method in that both methods aim at sampling the fastest-growing

forecast errors. Legras and Vautard (1996) show that the BV and SV methods are related

through notions of ”backward” and ”forward” Lyapunov vectors. The difference between

these two methods is that while the BV method attempts to provide a random sample

of growing analysis errors, the SV method gives a selective sample of perturbations that

can produce the fastest linear growth in the future.

The EnKF method is currently drawing attention as a data assimilation technique

and an ensemble forecast technique for the next generation because of its simple concep-

tual formulation and relative ease of implementation, e.g., it requires no derivation of a

tangent linear operator or adjoint equations, and no integrations backward in time. The

EnKF produces the perturbed members of ensemble forecast with consideration of the

flow-dependant analysis error. The EnKF was first introduced to a quasi-geostrophic sys-

tem by Evensen (1994). Recent reviews and overviews of the EnKF are given by Evensen

(2007), Evensen (2003), and Hamill (2003), which provide detailed information on the

formulation, interpretation and implementation of the EnKF, and now serve a reference

document for the basic methodology. However, the EnKF has later been further devel-

oped and examined in a large number of published papers to improve the accuracy and

reduce the computational cost, such as Ensemble Adjustment Kalman Filter (EAKF)

method (Anderson 2001), Ensemble Transform Kalman Filter (ETKF) method (Bishop

et al. 2001), Local Ensemble Kalman Filter (LEKF) method (Ott et al. 2004), four-

dimensional Ensemble Kalman Filter (4D EnKF) method (Hunt et al. 2004), and Local

Ensemble Transform Kalman Filter (LETKF) method (Hunt et al. 2007). In the opera-

tional medium-range ensemble forecast, the EnKF method has been adopted as an initial

perturbation method at the CMC since 12th January 2005 (Candille et al. 2007; Pellerin

et al. 2005) and at the UKMO since March 2006 (Bowler et al. 2008). Also, the JMA
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is developing this method with a view to an operational use (Miyoshi and Yamane 2007;

Miyoshi et al. 2007; Miyoshi and Sato 2007; Miyoshi and Aranami 2006). The develop-

ment costs can be reduced by introducing the EnKF methods into own EPS because of

unnecessity of the adjoint code and so on.

The ETKF method is based on the application of a Kalman Filter. The application

of the ETKF to ensemble forecast can be found in Wang and Bishop (2003) and Wang et al.

(2004). Although the ETKF formulation is derived from the EnKF theory which is used

for data assimilation, Wang and Bishop (2003) showed how it could be used to generate

ensemble perturbations in an idealized observation framework without having to perform

data assimilation. The ETKF was further extended to an operational environment with

the NCEP operational model and real-time observations by Wei et al. (2006a). In the

ETKF framework, the perturbations are dynamically cycled with orthogonalization in the

normalized observational space. The ensemble variance is constrained by the distribution

and error variance of observations. However, there are still some challenging issues in

the ETKF based ensemble with real observations, such as perturbation inflation. Flow

dependent inflation factors are hard to construct due to the fact that the number and

positions of observations change rapidly from one cycle to the next. Since the ensemble

mean from the ETKF has yet to be improved to the level of the analysis from a mature

variational Data Assimilation (DA) like NCEP SSI (Spectral Statistical Interpolation;

Parrish and Derber 1992), the perturbations generated by the ETKF are added to the

analysis field produced by an operational DA system. In addition, the ETKF is much

more expensive than breeding in an operational environment with real-time observations.

The ET/ETR method is one of the new initial perturbation methods as in the

EnKF method. The ET technique was first proposed by Bishop and Toth (1999) in target

observation studies. The research and experiments on using the ET and ET with Rescaling

(ETR) for ensemble forecasts first started at the NCEP before 2004, and the initial results

were presented in the THORPEX Symposium in 2004 (Wei et al. 2005a). Since then,

more experimental results with ensemble using the ET and ETR have been presented and

documented in Wei et al. (2005b, 2006b,c). Both ET and ETR are generalizations of the

BV method. The ET and ETR methods create globally orthogonal and no paired initial
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perturbations. In the ET and ETR methods, the initial perturbations are restrained by

the best available analysis variance from the operational DA system and centered around

the analysis field generated by the same DA system. In this way, the ensemble system will

be consistent with the DA. The perturbations are also flow dependent and orthogonal with

respect to the inverse of analysis error covariance. This will overcome some drawbacks

in the current operational system resulting from paired perturbations (Wei et al. 2006a).

Another advantage is that the ET/ETR technique is considerably cheaper than ETKF if

the analysis variance information is available. The ETR method is used at the NCEP, as

of December 2007.

There are many quantitative comparisons of these initial perturbation methods us-

ing a low-order Lorenz Model (Lorenz 1963, 1996) and/or a low resolution atmospheric

circulation model (Houtekamer and Derome 1995; Anderson 1997; Szunyogh et al. 1997;

Hamill et al. 2000; Bowler 2006; Descamps and Talagrand 2007). Houtekamer and

Derome (1995), using a quasi-geostrophic model, found that the SV, BV, and PO meth-

ods produce comparable ensemble forecasts. Bowler (2006), using the low-order Lorenz

model, concluded that the BV and SV methods are less efficient than the EnKF method.

Descamps and Talagrand (2007), using a low-order Lorenz model and a three-level quasi-

geostrophic atmospheric model, found that the EnKF and ETKF methods produce much

better ensemble forecast than the SV and BV methods, and that the EnKF method has

better performance than the ETKF method.

The BV, ETKF, ET, and ETR methods belong to the same class of methods based

on the concept of breeding, involving the dynamical cycling of ensemble perturbations.

This is based on the observation that modern NWP analysis methods strongly rely on

short range forecasts (Toth and Kalnay 1993). This is supported by Errico et al. (2007)

who found that: analysis error characteristics (e.g., statistics) are similar (to first approx-

imation) to those of 6-hr forecast error. Wei et al. (2008), using the NCEP operartional

analysis/forecast and observation systems, found that the ETR method performed best in

the probabilistic scores and in terms of the forecast error explained by the perturbations.

A common feature of the second generation techniques is that the initial perturbations are

more consistent with the DA system. A good DA system will provide accurate estimates
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of the initial analysis error variance for the EPS, while a good, reliable EPS will produce

accurate flow dependent background covariance for the DA system.

Furthermore, a multi-analysis ensemble proposed by Richardson (2001a) is also a

simple perturbation method. This technique uses the available operational analyses ob-

tained from other NWP centers. The analysis uncertainties caused by the DA system

in single NWP center can be reduced by introducing the analyses of the different NWP

centers. Evans et al. (2000) and Richardson (2001a) also created the multiple analyses

ensemble, which is generated by adding the ECMWF initial perturbations to the UKMO

control analysis.

While the initial perturbation methods can reduce the uncertainties of the initial

condition under the assumption that the imperfection of the numerical model is small

enough (small imperfection of numerical model is not always a relevant assumption),

most famous ensemble techniques to reduce the imperfection of numerical model is a

multi-model ensemble. This technique is adopted in not only the operational short- and

medium-range ensembles but also seasonal- to inter-annual-range ensembles and global

warming predictions. This technique combines the independent forecast data obtained by

different models in order to represent not only the uncertainties of the initial condition

but also the imperfection of the model formulation. Krishnamurti et al. (1999) first

introduced the multi-model superensemble to the weather and climate forecasts, and the

further researches have been done (Krishnamurti et al. 2000a, 2000b; Krishnamurti et

al. 2001). The aim of the multi-model superensemble is to construct a deterministic

forecast, which is more skillful than each NWP center’s forecast, by collecting some NWP

center’s single or several (not ensemble) forecasts and then using a multiple regression

technique. On the other hand, the poor man’s ensemble introduced by Ziehmann (2000)

and Buizza et al. (2003) is regarded as collections of some NWP center’s single or several

(not ensemble) deterministic forecasts as ‘one’ ensemble forecast.

Also, Evans et al. (2000) and Mylne et al. (2002) quasi-operationally performed

a multi-model multi-analysis medium-range ensemble, which combines the multi-analysis

ensemble and multi-model ensemble. The use of the multi-model multi-analysis ensemble
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is a standard practice in seasonal-range forecasting where the benefits were demonstrated

in the PROVOST (PRediction Of climate Variantions On Seasonal to interannual Time-

scales; Graham et al. 2000) and the European DEMETER (DEvelopment of a Multi-

model Ensemble system for seasonal to inTERannual prediction; Palmer et al. 2004)

projects. The multi-model multi-analysis techniques are also being used increasingly for

short-range ensemble forecasting (Stensrud et al. 1999).

In the operational medium-range ensemble forecast, the maintenance of multi-model

is more expensive than that of single model. Only CMC adopted this technique and used

two kinds of model in the operational medium-range ensemble forecast until 9th July

2007.

There are other ways to represent model uncertainty, e.g., stochastic physics (Buizza

et al. 1999; Palmer 2001) for the operational medium-range ensemble forecast in the

ECMEW, CMC, and UKMO, multi-parameterization approach (Houtekamer 1996) for

the operational medium-range ensemble forecast in the CMC, and perturbed-parameter

approach (Murphy et al. 2004; Stainforth et al. 2005) for climate prediction.

1.2 THORPEX and TIGGE

The NWP technique has progressed rapidly along with the development of the computer

science. As shown in Fig. 1.1, a five-day weather forecast today is as reliable as a three-day

weather forecast 25 years ago, which is a major scientific advance (Simmons et al. 2006).

The skill of the ensemble forecast has also been improved continuously (Fig. 1.2). The

World Meteorological Organization (WMO) began THe Observing system Research and

Predictability EXperiment (THORPEX; WMO 2005) project in 2005. The THORPEX is

a 10-year international research and development programme to accelerate improvements

in the accuracy of one-day to two-week high-impact weather forecasts for the benefit of

society, the economy and the environment. The THORPEX establishes an organizational

framework that addresses weather research and forecast problems whose solutions will

be accelerated through international collaboration among academic institutions, opera-

tional forecast centers and users of forecast products. The THORPEX will contribute to
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the development of a future global interactive forecasting system, which would generate

numerical probabilistic products, available to all nations – developed or developing. At

the heart of the THORPEX is the research needed for the design and demonstration of a

global interactive forecasting system that allows information to flow interactively between

forecast users, numerical forecast models, DA systems and observations. Such a system

can also be adapted to allow the observing system, observations, assimilation and the

model to be configured to maximize forecast skills for specific societal and economic uses.

The THORPEX Interactive Grand Global Ensemble (TIGGE) is a key component

of the THORPEX which in turn is a major component of the World Weather Research

Programme (WWRP) of the WMO. The objectives of the TIGGE are: (i) enhancing

collaboration on ensemble prediction, internationally and between operational centers and

universities; (ii) developing new methods to combine ensembles from different sources and

to correct for systematic errors (biases, spread over-/under-estimation); (iii) achieving a

deeper understanding of the contribution of observation, initial and model uncertainties

to forecast error; (iv) exploring the feasibility and the benefit of interactive ensemble

systems responding dynamically to changing uncertainty; (v) enabling evolution towards

an operational system, the ”Global Interactive Forecast System (GIFS)”. As of June

2008, ten operational NWP centers: BOM, CMA, CMC, CPTEC, ECMWF, JMA, KMA,

Meteo-France, NCEP, and UKMO, producing daily global ensemble forecasts to 1-2 weeks

ahead delivered in near-real-time a selection of forecast data to the TIGGE data archives

at the CMA, ECMWF, and National Center for Atmospheric Research (NCAR). This data

stored in the TIGGE archives is accumulating at a daily rate of approximately 300GB

from these providers. The outline of data accumulated in the TIGGE archives is shown in

Table 1.2. The ensemble size accumulated within one day is 498 until 60-hr forecast time,

and 487 after 66-hr forecast time (Fig. 1.3). Although intercomparison of the skill of

the deterministic forecast has been performed before the TIGGE project started, overall

intercomparison of the skill of the ensemble forecast has not been performed. The TIGGE

archives, starting from October 2006, enable us to compare the skill of ensemble forecasts

(Figs. 1.4 and 1.5). It is well known that the ECMWF has the best performance in the

deterministic forecast. It is found that the ECMWF also has the best performance in the
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ensemble forecast. In particular, the ECMWF is far superior to the other centers in the

early forecast range. This might result from the high quality of the numerical model and

the DA techniques in the ECMWF NWP system.

Prior to the TIGGE project, Matsueda et al. (2006, 2007) constructed the Multi-

Center Grand Ensemble (MCGE) forecast, consisting of three operational medium-range

ensemble forecasts (maximum ensemble size of 86) by the JMA, NCEP, and CMC, on

a quasi-operational basis. Although many researches indicated the advantages of multi-

model and poor man’s ensemble against a deterministic forecast, and the increase in the

ensemble size was expected to lead to the more skillful probabilistic forecast, it was diffi-

cult to increase the ensemble size by various limitations (e.g., a NWP center performs only

several deterministic forecasts, and the data transfer of operational ensemble forecast data

is difficult due to its huge data size and the slow speeds of internet connection). Matsueda

et al. (2006) have revealed that MCGE predictions are more skillful than single-center

ensemble predictions with equal weights among ensemble members and no bias correction

using monthly deterministic and probabilistic scores, such as Anomaly Correlation (AC),

Root Mean Square Error (RMSE), and Brier Skill Score (BSS) for 500 hPa geopoten-

tial height (Z500) and 850 hPa temperature over the Northern Hemisphere (NH, 20◦N–

90◦N) in September 2005. Matsueda et al. (2007) also verified the daily performance of

the MCGE for ensemble mean of the Z500 over the NH from August 2005 to February

2006. They found that the improvement in the daily RMSE of the MCGE relative to a

single-center ensemble was reduced up to about 20% whether the atmospheric field was

more predictable or not. Their works are a pioneer of the intercomparison of operational

medium-range ensemble forecast and the construction of a new type of ensemble.

1.3 Purpose of this study

In this study, the overall intercomparisons of five operational medium-range ensemble

forecasts: CMC, ECMWF, JMA, NCEP, and UKMO, were performed. A new MCGE

was constructed using these operational medium-range ensembles from December 2006 to

November 2007, following the method presented by Matsueda et al. (2006, 2007). The
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forecast performances of the MCGE were investigated, and the possibility of the construc-

tion of the MCGE that outperforms the ECMWF ensemble, having the best performance

in the world, was searched. Also, the analysis of an extreme event, atmospheric blocking,

was performed using ensemble forecast data, ensemble-based simple sensitivity analysis,

and multi-analysis ensemble forecasts.

The outline of the paper is as follows. Chapter 2 introduces the five operational

medium-range ensemble prediction systems, and presents the data and analysis proce-

dure used in this study. The overall intercomparisons of the five operational medium-

range ensemble forecasts, and the construction and validation of MCGE are performed.

In Chapter 3, the analysis of an extreme event, atmospheric blocking, is performed us-

ing ensemble forecast data, ensemble-based simple sensitivity analysis, and multi-analysis

ensemble forecasts. Based on the results obtained from Chapter 2-3, the forecast per-

formances of the single-center ensemble and MCGE, and the analysis of extreme event

using the ensemble forecast are discussed in Chapter 4. Conclusions of this study are

summarized in Chapter 5.
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Table 1.2: Outline of data accumulated in the TIGGE archives as of June 2008.

CMA (http://wisportal.cma.gov.cn/tigge/index.jsp)
Portal Site ECMWF (http://tigge.ecmwf.int/)

NCAR (http://dss.ucar.edu/pub/tigge/)
Data Provider BOM, CMA, CMC, CPTEC, ECMWF,

JMA, KMA, Meteo-France, NCEP, UKMO
Data Format GRIB2
Surface level psea, ps, prcp, t2m, u10m, v10m, etc.
Pressure level hgt, tmp, u, v, q

(1000, 925, 850, 700, 500, 300, 250, 200 hPa)
Potential Temperature Level PV (320K isentropic level)

Potential Vorticity Level Potential Temperature, u, v (2PV)
Horizontal Resolution original resolution of each NWP center

2006.10.01– (ECMWF, JMA, UKMO)
2007.03.05– (NCEP)
2007.05.15– (CMA)

Data Period 2007.09.03– (BOM)
year.mon.day 2007.10.03– (CMC)

2007.10.25– (Meteo-France)
2007.12.28– (KMA)

2008.02.01– (CPTEC)
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Fig. 1.1: Anomaly correlation coefficients of 3-, 5-, 7-, and 10-day ECMWF 500 hPa
height forecasts for the extratropical Northern and Southern hemispheres, plotted in the
form of annual running means of monthly-mean scores for the period of 1981–2006. The
shading shows the differences in scores between the two hemispheres at the forecast ranges
indicated (Simmons et al. 2006).
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Fig. 1.2: Longest available record of skill of JMA ensemble mean forecast from DJF 2002
to SON 2007. The skill is evaluated by the seasonal RMSE for 500 hPa height over the
Northern Hemisphere (20◦N–90◦N). The D, M, J, and S shown in the figure indicate DJF,
MAM, JJA, and SON, respectively. The red, green, blue, and yellow lines are for 24-,
72-, 120-, and 168-hr forecast times, respectively. The red, green, blue, and yellow bars
indicate improvement in the seasonal RMSE relative to that of the previous year for 24-,
72-, 120-, and 168-hr forecast times, respectively.
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Fig. 1.3: Spaghetti diagram of 500 hPa height (5550m) for ensemble members of BOM
(yellow green), CMA (aqua), CMC (yellow), CPTEC (orange), ECMWF (blue), JMA
(red), KMA (pink), NCEP (green), and UKMO (purple), initialized on 20th February
2008, valid 12 UTC on 25th February 2008. The black line is for ECMWF analysis at the
valid time. The ensemble size is 487.
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Chapter 2

Multi-Center Grand Ensemble using
five operational medium-range
ensemble forecasts

2.1 Operational medium-range ensemble prediction

systems

2.1.1 Canadian Meteorological Center (CMC)

On 24th January 1996, the Canadian Meteorological Center (CMC) started running a

medium-range ensemble prediction system with the perturbed observation (PO) method

and 8 ensemble members (Houtekamer et al. 1996; Lefaivre et al. 1997). This set using 8

different versions of the Spectral Finite-Element (SEF; Ritchie 1991; Ritchie and Beaudoin

1994) model was extended to sixteen members on 24th August 1999 by adding 8 different

versions of the Global Environmental Multi-scale (GEM; Côté et al. 1998a, b) model. The

models differ in their physical parameterizations and their dynamical cores. Eight different

configurations of each model are described in Pellerin et al. (2003). The horizontal

resolution was increased in June 2001: the SEF models went from TL95 to TL149 with

an equivalent increase from 1.875 degrees to 1.2 degrees for the grid point GEM model

(Pellerin et al. 2003). On 12th January 2005, the independent assimilation cycles driven

by 8 versions of the SEF model and the OI technique were replaced by a 96 member

ensemble with each member using the same version of the GEM model and the EnKF
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for the operational EPS. The EnKF introduced at the CMC (Houtekamer and Mitchell

2005) is a 4D-DA method that uses a Monte-Carlo ensemble of short-range forecasts to

estimate the flow-dependent covariances of the guess fields. There is thus a reservoir of

initial conditions which are all suitable to initiate a medium-range EPS. Sixteen of these

analyses were arbitrarily chosen to initiate and run the SEF and GEM models up to 10

days. In 10th July 2007, 4 more members were added to produce a 20-member ensemble.

All perturbed forecasts and the control forecast are made with the GEM model up to

16 days twice a day. The horizontal resolution of the GEM model is increased to 0.9

degrees. The 20 models have different physical parameterizations, DA cycles and sets of

perturbed observations. The detail of the different physics parameterizations is described

in the CMC Web site (http://www.weatheroffice.gc.ca/ensemble/verifs/model e.html).

2.1.2 European Center for Medium-Range Weather Forecasts
(ECMWF)

The European Center for Medium-Range Weather Forecasts (ECMWF) is a first NWP

center that started to perform a medium-range ensemble forecast in December 1992 to-

gether with the NCEP. When first implemented in 1992, the ECMWF-EPS was base on

33 forecasts produced with a T63L19 resolution version of the ECMWF model (Molteni

et al. 1996). The initial uncertainties were simulated by starting 32 members from per-

turbed initial conditions defined by T21L31 perturbations with the fastest growth during

the first 36 hours of the forecast range (the singular vectors of the tangent forward model

version; Buizza and Palmer 1995). Between December 1992 and December 2005, the EPS

has been upgraded several times, benefiting both from any change of the ECMWF DA and

forecasting system, and from modifications of the EPS configuration specifically designed

to improve the simulation of initial and model uncertainties. It is worth identifying the

few of them that affected the EPS overall configuration: In 1996 the system was upgraded

to a 51-member TL159L31 system (Buizza et al. 1998), with T42L31 singular vectors.

In March 1998, initial uncertainties due to perturbations that had grown during 48 hours

previous to starting time (evolved singular vectors; Barkneijer et al. 1999) were included.

In October 1998, a scheme to simulate model uncertainties due to random model error
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in the parameterized physical processes was introduced (Buizza et al. 1999). As a re-

sult of these changes, the upgraded 51-member system had a better level of spread, a

mode skilful ensemble mean, a higher chance of including the verification analysis inside

the forecast distribution and more accurate probabilistic predictions. In October 1999,

following the increase of the number of vertical levels in the DA and high resolution deter-

ministic model from 31 to 60, the number of vertical levels in the EPS was increased from

31 to 40. In November 2000, following the increase of resolution of the ECMWF DA and

high resolution deterministic forecast from TL319L60 to TL511L60, the EPS resolution

was upgraded from TL159L40 to TL255L40 (Buizza et al. 2003), with T42L40 singular

vectors. Since April 2003, the ECMWF-EPS has been running twice a day, with 00 and 12

UTC initial times. In 2003, work started to investigate the possibility of further increasing

the resolution of the ensemble prediction and to extend the forecast length of ensemble

system. During this work, different ensemble configurations were tested to identify the

best candidates to replace the operational ensemble configurations. At many NWP cen-

ters which perform the medium-range ensemble forecast, the horizontal resolution used

in the ensemble forecast is constant with the forecast range. Following the example of

the NCEP (Szunyogh and Toth 2002), the ECMWF adopted a configuration that had a

variable resolution, with a higher spectral truncation in the early forecast range and a

lower spectral truncation in the later forecast range. They call this configuration VAREPS

(Variable Resolution Ensemble Prediction System; Buizza et al. 2007). It is hoped that

introducing the VAREPS leads to skilful predictions of small-scale, severe-weather events

in the early forecast range, and provision of accurate large-scale forecast guidance in the

extended forecast range (say beyond forecast day 7) under the same computing resource

as traditional EPS using the constant horizontal resolution. On 1st February 2006, the

horizontal resolution of the 10-days operational EPS was increased from TL255L40 to

TL399L62. On 12th September 2006, the 10-days operational EPS was change to the

15-days VAREPS with a TL399L62 resolution up to forecast day 10 and a TL255L62

resolution between forecast days 10 and 15.
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2.1.3 Japan Meteorological Agency (JMA)

In March 2001, the Japan Meteorological Agency (JMA) started running a medium-range

ensemble prediction system with the BV method and 25 ensemble members once daily.

A low-resolution version of the JMA Global Spectral Model (GSM), T106L40, was inte-

grated from perturbed initial conditions. Thus, the dynamical framework and physical

processes are identical with those of the operational GSM except for the horizontal res-

olution. In March 2006, the JMA-EPS changed the horizontal resolution into TL159L40

with a semi-Lagrangian advection scheme, and the ensemble size into 51. The process

of the BV method is as follows. First, short-range forecast errors are added to a control

analysis as an initial perturbation. Second, both perturbed analysis and control analy-

sis are integrated up to 12 hours. Then, the difference of the two fields at 12 hours is

scaled down to normalize. The normalized perturbation is added again to the analysis

at that time. The second and third processes, known as a breeding cycle, are integrated

every 12 hours. In the EPS, 50 perturbed initial fields are generated from 25 independent

breeding cycles by adding each perturbation positively and negatively. The amplitudes of

the initial perturbation, which are confined in the Northern Hemisphere and tropics, are

adjusted so that the variance of 500 hPa height over the extra-tropical Northern Hemi-

sphere is equal to 14.5% of the climatological variance, and also reflect analysis errors

according to a geographical distribution. The normalized perturbations are also orthog-

onalized to each other before adding to the analysis. In addition, the JMA-EPS was

changed on 21st November 2007. The horizontal resolution, vertical levels, and initial

perturbation methods, were changed into TL319, 60 layers, and SV method with T63L40

initial perturbation, respectively. It is noted that the verification period in this study,

from December 2006 to November 2007, contains these 10 days in which the JMA-EPS

uses the SV method.

2.1.4 National Centers for Environmental Prediction (NCEP)

On 7th December 1992 the National Centers for Environmental Prediction (NCEP) be-

gun an operational medium-ensemble forecast using the BV initial perturbation method
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(Tracton and Kalnay 1993; Toth and Kalnay 1993). This initial ensemble configuration

consisted of high- and low-resolution control forecasts and one pair of perturbed forecast

at 00 UTC, and high-resolution control forecast at 12 UTC. The high-resolution con-

trol forecasts were run at T126 resolution with 28 vertical levels out to day-6 and day-3

lead times at 00 and 12 UTC, respectively, after which the fields got truncated to T62

resolution and the runs were extended to day-12 lead time due to the limitation of the

computer resources. Also, the NCEP used the low-resolution (T62) analysis cycle in the

following way: a low-resolution control forecast (as before), and a BV perturbation was

added to and subtracted from the analysis to provide initial conditions for two perturbed

forecasts. The BV perturbation was based on the rescaled difference between a member of

the ensemble and control forecast at 1-day lead time. This difference was then used as the

initial perturbation for the next-day ensemble member. With this self-breeding method,

efficient perturbations were generated without any extra computational cost beyond run-

ning the forecasts themselves. Following the installation at the NCEP of a new Cray C90

supercomputer, the ensemble forecast system was upgraded on 30th March 1994. The

NCEP replaced the one BV pair of forecast at 00 UTC by five BV pairs of forecasts at 00

UTC and two BV pairs at 12 UTC, and all the forecasts are extended to 16 days, without

the change of model resolution. These 7 BV pairs were based on 7 independent breeding

cycles. After that, many small implementations have been done as follows for about ten

years: On 15th June 1998, the high-resolution control forecasts were run at T170L42

resolution out to day-7 and day-3 lead times at 00 and 12 UTC, respectively, after which

the resolution remained at T62L28. On 11th May 2000, the perturbed ensemble size at

12 UTC was increased from 4 to 10. On 27th June 2000, the horizontal resolution of all

perturbed members at 00 and 12 UTC and the low-resolution control run at 12h UTC

was increased from T62L28 to T126L42 out to day-3 lead times. On April 2003, the

high-resolution control runs up to 3.5 days at 00 and 12 UTC were run at T254L64. On

9th March 2004, a major implementation was done. The ensembles have been available

four times daily at a T126L28 resolution up to 7.5 days (a T62L28 resolution for the

remaining 8.5 days). On 16th August 2005, the breeding cycle was changed from 24 hr

cycle to 6 hr cycle. The horizontal resolution of perturbed member after 7.5 days was

changed from T62L28 to T126L28. The high-resolution control forecasts at 00, 06, 12,
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and 18 UTC were run at T382L64 up to 7.5 days and at T190L64 after 7.5 days. On 30th

May 2006, a new initial perturbation method using the ETR technique was introduced

into the NCEP-EPS (Wei et al. 2008). Also, the perturbed ensemble size was increased

from 10 to 14, and the low-resolution control runs at T126L28 were added for 06, 12, and

18 UTC. On 27th March 2007, the perturbed ensemble size was increased from 14 to 20,

which is most recent implementation.

2.1.5 United Kingdom Meteorological Office (UKMO)

The medium-range ensemble forecast at the United Kingdom Meteorological Office (UKMO)

is based on the Met Office Global and Regional Ensemble Prediction System (MOGREPS;

Bowler et al. 2008). This system consists of global and regional ensembles, with the global

ensemble providing the boundary conditions and initial condition perturbations for the

regional ensemble. The UKMO global ensemble forecast was started in June 2005 with 24

members twice daily. Perturbations to the initial conditions are generated using an ETKF

method (Bowler 2006). The global Unified Model is run at a horizontal resolution of 0.83◦

latitude by 1.25◦ longitude (approximately 90 km in the mid-latitudes), with 38 levels. In

the MOGREPS, two stochastic physics schemes are included to represent the effects of

structural and sub-grid-scale model uncertainties: the Random Parameters (RP) scheme

and the Stochastic Convective Vorticity (SCV) scheme. The RP scheme aims to account

for the uncertainty associated with empirical parameters in many physical processes (con-

vection, boundary layer exchange, etc) and to simulate the non-deterministic processes

not explicitly accounted for by the different parameterizations. The idea behind RP to

treat a selected group of parameters as stochastic variables, is similar to the approach

followed by Lin and Neelin (2000) and Bright and Mullen (2002). A total of 8 parameters

from 4 different physical parameterizations are included. The physical parameterizations

affected by the scheme are: large-scale precipitation, convection, boundary layer, and

gravity wave drag. The main aim of the SCV scheme (Gray and Shutts 2002) is to repre-

sent a Potential Vorticity (PV) anomaly dipole similar to the one typically associated with

a Mesoscale Convective System (MCS), because the PV signatures of MCSs are not well

represented in the Unified Model. The SCV scheme is used only by the global ensemble.
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2.2 Data

2.2.1 Ensemble forecast data

In this section, five operational medium-range ensemble forecast data: CMC, ECMWF,

JMA, NCEP, and UKMO, are used. These data are obtained from the TIGGE portals

constructed at the CMA, ECMWF, and NCAR. Analysis period is from December 2006

to November 2007. The configurations of these EPSs in the verification period is same

as that in Table 1.1, except for the changes of the ensemble size in the CMC and NCEP,

of the numerical model in the CMC and JMA, and of the initial perturbation method

in the JMA. Although the horizontal resolutions of the original ensemble forecast data

transferred from each NWP center to the TIGGE portal are different from each other,

it is possible to interpolate each original horizontal resolution to the common horizontal

resolution before we download these ensemble forecast data. In this study, 2.5◦ latitude

× 2.5◦ longitude grid is adopted.

2.2.2 ECMWF 40 Year Re-Analysis (ERA40)

In the deterministic and probabilistic verifications, climate data and climatological stan-

dard deviation are needed. These were calculated from the ECMWF 40 year reanalysis

data (ERA40; Uppala et al. 2005). First, the climatology and climatological standard

deviation are calculated for each calender day. After that, a 60-day low-pass Lanczos

filter (Duchon 1979) is applied for the climatology and climatological standard deviation.

Although we generally need to use the climatology and climatological standard deviation

of its own model to verify the forecast skill, the climatology and climatological standard

deviation calculated from the ERA40 are used in this study for simplicity.
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2.3 Methods

2.3.1 Statistics on ensemble forecast

The most compact expressions of the information contained in an ensemble forecast are

ensemble mean and ensemble spread.

Ensemble mean

The ensemble mean is obtained by averaging all ensemble forecasts:

x =
1

N

N∑
n=1

xn (2.1)

where xn is the ensemble member value for member n, N is the number of ensemble mem-

ber. This has the effect of filtering out features of the forecast that are less predictable.

These features might differ in position, intensity and even presence among the members.

The averaging retains those features that show agreement among the members of the

ensemble. This is also, but to a lesser extent, the case with the central cluster in the

tubing method (Atger 1999).

The averaging technique works best some days into the forecasts when the evolu-

tion of the perturbations are dominantly non-linear. During the initial phase, when the

evolution of the perturbations has a strong linear element, the ensemble average is almost

identical to the control because of the“mirrored”perturbations (added to and subtracted

from the control run).

Ensemble spread

If 50 ensemble members are quite different from each other, it is obvious that many of

them are wrong. If there is a good agreement among the members, there are more reasons

to be confident about the forecast and that most of them are close to the truth.

The ensemble spread measures the differences between the members in the ensemble

forecast. The ensemble spread is the rms-difference between the ensemble members and
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ensemble mean defined as:

spread =

√√√√ 1

D ·N
D∑

d=1

N∑
n=1

(xd
n − xd)2 (2.2)

where N is the number of ensemble members, D is the number of grid-points in the

spatio–temporal (for seasonal score) or temporal domains (for daily score), namely which

indicates all grid points over the Northern Hemisphere (NH, 20◦N–90◦N) in the verification

period. xd
n is the ensemble member value for member n at the grid-point d, and xd is

the ensemble mean at the same grid-point. A small (large) spread indicates low (high)

forecast uncertainty. However, a small (large) spread does not necessarily indicate high

(low) skill, although it could give an indication of high (low) predictability.

2.3.2 Verification scores for deterministic forecasts

In deterministic verifications, Root Mean Square Error (RMSE) is used to evaluate the

forecast skills of the control run and ensemble mean forecast.

Root Mean Square Error (RMSE)

The RMSE is defined by the following equation:

RMSE =

√√√√ 1

D

D∑

d=1

(xd
f − xd

a)
2 , (2.3)

where xd
f and xd

a indicate the forecast and analysis values at the grid-point d, respectively.

In this study, D is the number of grid points in the spatio–temporal (for seasonal score)

or temporal domains (for daily score), namely which indicates all grid points over the NH

in the verification period. Each ensemble mean and control forecasts are verified against

its own analysis. The control run of each ensemble at initial time is regarded as the

analysis data. The RMSE indicates a forecast error, and the RMSE score of zero (0.0)

demonstrates a perfect skill. The RMSE is expected to be comparable with the ensemble

spread at the same verification time.

In general, Anomaly Correlation (AC) represented by the following equation is also
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used in the deterministic verification.

AC =

D∑

d=1

(xd
f − xd

c)(x
d
a − xd

c)

√√√√
D∑

d=1

(xd
f − xd

c)
2

√√√√
D∑

d=1

(xd
a − xd

c)
2

, (2.4)

where xd
f , xd

a and xd
c indicate the forecast, analysis and climatology values at the grid-

point d, respectively. D is the number of total grid-points in the temporal domain. The

AC indicates a patterns correlation between forecast and analysis anomalies, so the AC

decreases with time. The AC is 1.0 for the perfect forecast. Based on experience with

the anomaly correlation, a score above 0.6 suggests that the forecast is sufficiently good,

while a score below 0.6 signifies the forecast is not useful. In general, the time when

the AC first reaches 0.6 is called the limitation of predictability. Calculating the AC

requires not only forecast and analysis data but also climatology. Easily expected from

geometric relationship between the AC and RMSE in phase space shown in Fig. 2.1, the

AC is sensitive to the choice of the climatological reference, whereas the RMSE is not

influenced by climatology. Although the model climatology is different from each other,

it is not easy to obtain all model climatologies of the NWP centers. Based on these facts,

the deterministic verification is performed using the RMSE.

climate

θ

θ = cos−1AC

RMSE

forecast

analysis

Fig. 2.1: Geometric relationship between the AC and RMSE in the phase space.
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2.3.3 Verification score for probabilistic forecasts

In the ensemble forecast, many predictions are performed. One can obtain the occurrence

probabilities of the weather events by counting the ensemble members which are included

in arbitrary ranked categories. In probabilistic verifications, Ranked Probability Score

(RPS; Epstein 1969; Murphy 1971) was used to evaluate the skill of ensemble probabilistic

forecast.

Ranked Probability Score (RPS)

One of the most commonly used measure in the probabilistic verification is the RPS

(Wilks 2006). The RPS is essentially a generalization of the Brier Score (BS; Brier 1950)

to the multi-category situation. That is, RPS is a squared-error score with respect to the

observation 1 if the forecast event occurs, and 0 if the event does not occur. However,

in order for the score to be sensitive to distance, the squared errors are computed with

respect to the cumulative probabilities in the forecast and observation vectors.

In this study, the RPS is calculated based on 10 climatologically equally likely cat-

egories (J = 10). The climatological anomaly of each ensemble member, normalized by

a climatological standard deviation, is classified into 10 categories: < −2.0, [−2.0,−1.5),

[−1.5,−1.0), · · · , [1.0, 1.5), [1.5, 2.0), ≥ 2.0. The predicted and observed probabilities

included in the j-th (j = 1, 2, · · · , J) category are represented as pi and oi. The cumu-

lative predictions and observations, denoted Pm and Om, are defined as functions of the

components of the prediction vector and observation vector, respectively, according to

Pm =
m∑

j=1

pj, m = 1, 2, · · · , J, (2.5)

and

Om =
m∑

j=1

oj, m = 1, 2, · · · , J. (2.6)

Note that since Pm and Om are both cumulative functions of probability components that

must add to one, the final sums PJ and OJ are always both equal to one by definition.

The RPS is the sum of squared differences between the components of the cumulative
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prediction and observation vectors in Eqs. 2.5 and 2.6, given by

RPS =
1

J − 1

J∑
m=1

(Pm −Om)2, (2.7)

or, in terms of the predicted and observed vector components pj and oj,

RPS =
1

J − 1

J∑
m=1

[(
m∑

j=1

pj

)
−

(
m∑

j=1

oj

)]2

. (2.8)

A perfect forecast would assign all the probability to the single pi corresponding to the

event that subsequently occurs, so that the prediction and observation vectors would be

the same. In this case, the RPS is equal to zero. Forecasts that are less than perfect

receive scores that are positive numbers, so the RPS has a negative orientation. Note also

that the final (m = J) term in Eqs. 2.7 and 2.8 is always zero, because the accumulations

in Eqs. 2.5 and 2.6 ensure that PJ = OJ = 1. Therefore, the worst possible score is 1.

For two forecast categories (J = 2), the RPS is same as the BS. Note that since the last

term, for m = J , is always zero, in practice it needs not actually to be computed.

In this study, the RPS is calculated for each grid point over the NH in the verification

period, and summed over the spatio-temporal domain for seasonal score.

2.3.4 Comparison of scores

In order to compare the skill of forecast with that of a reference forecast, a skill score is

usually calculated.

Skill score

The skill score indicates the improvement rate of a forecast relative to a reference forecast.

The detail is as follows. For any verification diagnostic, X, the skill of a forecast relative

to a reference forecast is given by

SS =
Xr −Xf

Xr −Xp

(2.9)

where Xf is the score of X for the forecast, Xr for the reference forecast and Xp for a perfect

deterministic or probabilistic forecast. A skill score has a maximum value of unity (or
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100%) for a perfect forecast (Xf = Xp) and a value of zero for performance equal to that

of the reference (Xf = Xr). The SS has no lower limit, with negative values representing

poorer skill than the reference. Normally the reference forecast used is a standard baseline

such as persistence or climatology. In order to evaluate the performance of the MCGE

relative to the ECMWF ensemble, the ECMWF ensemble is used as a reference in this

study. Also, the Xp is equal to zero for the RMSE and RPS. The skill score for the RMSE

and RPS is described simply as follows:

SS =
Xr −Xf

Xr

= 1− Xf

Xr

(2.10)
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2.4 Comparison of CMC, ECMWF, JMA, NCEP,

and UKMO ensemble forecasts

2.4.1 Daily and seasonal RMSEs

First, the comparisons among the deterministic skills of five control runs: CMCcntl,

ECMWFcntl, JMAcntl, NCEPcntl, and UKMOcntl, and among that of five ensem-

ble mean forecasts: CMC17 (CMC21), ECMWF51, JMA51, NCEP11 (NCEP21), and

UKMO24, are conducted using the RMSE for 500 hPa geopotential height (Z500) over

the NH from December 2006 to November 2007. It is noted that the ensemble sizes of the

CMC and NCEP have changed within the verification period. The single-center ensemble

means created in this study are listed in Table 2.1.

Figure 2.2a indicates the time series of 120-hr RMSEs of five single-center control

runs for the Z500 over the NH from December 2006 to November 2007. Each forecast

was verified against its own analysis (defined as the control run at the initial time) on a

regular 2.5 degree grid. It is noted that the 5 day running mean are conducted against

the time series of the RMSEs. It is found that each forecast skill varies slowly throughout

the verification period irrespective to seasons. The fluctuation of the RMSE is large

during the winter season, and small during the summer season. Paying attention to daily

scores, it is also found that the RMSEs vary considerably depending on atmospheric flow

of the day, as seen in Kimoto et al. (1992), who have investigated the daily scores with

single deterministic forecasts from three operational centers: ECMWF, JMA, and NCEP.

Although there are some differences among the magnitude of the RMSEs, the RMSEs

tend to show similar variations along the atmospheric flow. The ECMWF control run

seems to be most skilful than the other control runs, except for the summer season. This

might result from the high quality of the numerical model and the DA techniques in the

ECMWF NWP system. Also, the CMC control run seems to have worst skill than the

other control runs, especially during the winter and spring seasons. There seem to be no

apparent differences among the forecast skills of the JMA, NCEP, and UKMO throughout

the verification period.
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Figure 2.2b indicates the time series of 120-hr RMSEs of five single-center ensemble

means for the Z500 over the NH from December 2006 to November 2007. Each ensemble

mean forecast was verified against its own analysis (defined as the control run at the initial

time) on a regular 2.5 degree grid. It is noted that the ordinate for ensemble means (Fig.

2.2b) is not that for the control runs (Fig. 2.2a). As in the control runs, the RMSEs vary

depending on atmospheric flow of the day. Each ensemble mean has better forecast skill

than each control run. In terms of the ensemble mean, the ECMWF tends to be most

skilful than any other ensemble means, especially during the autumn season. Although

the CMC control run has apparent worst skill especially during the winter and spring

seasons, the forecast skill of the CMC ensemble mean is almost comparable to that of

the JMA, NCEP, and UKMO during the whole verification period. Although the CMC

adopted the multi-model (multi-parameterization) ensemble until 9th July 2007 and the

EnKF method, a part of this improvements in the RMSE of the CMC might have resulted

from the use of these advanced techniques.

Seasonal mean scores are shown in Fig. 2.3 and 2.4. For all ensembles in four seasons,

the RMSE of the ensemble mean forecast is lower than the RMSE of the corresponding

control forecast. During the winter season, it is found that the ECMWF has the best

control and ensemble mean forecasts at all the lead times. In particular, the ECMWF

is far superior to the other centers in the early forecast range. The high performance of

numerical model and DA system in the ECMWF NWP system is recognized. Also, the

CMC has the worst forecast skill in terms of the control run and ensemble mean forecast.

In terms of the control run, the UKMO has second-best forecast skill until 168-hr lead

time. The NCEP and JMA has worse forecast skill than the ECMWF in the early forecast

range. The JMA has second-worst forecast skill at all the lead times, whereas the NCEP

has comparable with or better forecast skill than the UKMO after 168-hr lead time. On

the other hand, in terms of the ensemble mean, the UKMO has the better forecast skill

than the JMA and NCEP at all the lead times. The NCEP is slightly more skilful than

the JMA at the medium-lead time, while the JMA is slightly more skilful than the NCEP

at the short- and long-lead times

During the spring season, the NWP center which has the best or worst performance

35



is the same as that during the winter season. However, the JMA, NCEP, and UKMO

have similar forecast skills in terms of the ensemble mean, while the control run of the

NCEP is more skilful than that of the JMA and UKMO after 120-hr lead time.

During the summer season, the ECMWF has the best forecast skill in terms of the

control run and ensemble mean, except for the control run after 168-hr lead time . It

is interesting that the CMC ensemble mean is almost comparable to the JMA, NCEP,

and UKMO ensemble means although the CMC control run has the worst forecast skill.

The improvement of the CMC ensemble mean might be due to upgrade of the CMC-EPS

on 9th July 2007. Also, the JMA ensemble mean has the second-best forecast skill after

120-hr lead time, whereas the NCEP ensemble mean has the worst forecast skill.

During the autumn season, the ECMWF has the best performance, except for the

control run after 168-hr lead time. Compared with the other seasons, the ECMWF is

far superior to the other centers in the early forecast range. The skill of the ECMWF at

120-hr lead time is comparable with that of the remains at 96-hr lead time. Although

the control runs of the CMC, JMA, NCEP, and UKMO have different forecast skill, these

ensemble mean forecasts have similar forecast skill.

2.4.2 Relationship between RMSE and ensemble spread

Figure 2.5 shows the Z500 ensemble mean and spread for the CMC, ECMWF, NCEP,

UKMO, and JMA ensembles initialized at 17th November 2007 valid at 12 UTC on 22nd

November 2007. A atmospheric blocking occurred over the west coast of North America on

22nd November 2007. A jet stream widely meandered over north Atlantic-Europe region.

In terms of the hemispheric characteristics, it is easily found that the magnitudes of

ensemble spread are different from each other. As shown later, the JMA ensemble has the

largest spread, whereas the NCEP ensemble has the smallest spread. The spatial pattern

of each spread is also different from each other. For example, the JMA ensemble showed

high uncertainty on a trough over the north Pacific, whereas the ECMWF ensemble at 12

UTC did not show notable uncertainty on a trough. This indicates that the JMA members

predicted a mutually different trough, unlike the ECMWF members. In other words,
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this indicates a possibility that JMA ensemble captures an atmospheric phenomenon not

predicted in the ECMWF ensemble. In contrast, all ensembles have large uncertainties

over the Scandinavian Peninsula and the south of the Greenland, although the spatial

extent of large uncertainties is somewhat different. Many of ensembles also have large

spread over the south of Alaska. These areas correspond to the upstream of a ridge.

Figure 2.6 illustrates the time series of 120-hr spreads of five single-center ensembles

for the Z500 over the NH from December 2006 to November 2007. As in the RMSE, the

ensemble spreads vary depending on atmospheric flow of the day. The magnitude of the

spread is large (small) during the winter (summer) season. Also, there are well-defined

differences among five spreads. The JMA has the largest spread in the five single-center

ensembles, while the NCEP has the smallest spread in the five single-center ensembles.

The spreads of the CMC, ECMWF, and UKMO are comparable with each other. These

differences might result from the different policy to the EPS. In fact, the JMA-EPS has

a policy that the ensemble spread is comparable with the RMSE in latter half of the

forecast period. So, the JMA-EPS has larger initial perturbations than the other NWP

centers.

Seasonal means of the ensemble spreads are shown in Fig. 2.7 and 2.8. The following

features are seen regardless of the season. The features at 120-hr lead time, as seen in Fig.

2.6, are shown at the other lead time, except for the short-lead time. The NCEP has the

smallest ensemble spread after 48-hr lead time, while the JMA has the largest ensemble

spread at all the lead times. The ensemble spreads of the CMC, ECMWF, and UKMO

are comparable with each other, although the UKMO tends to have smaller ensemble

spread at the latter half of the lead time except for the winter season.

As described in section 2.3, the ensemble spread is expected to be comparable with

the RMSE at the same verification time. A good relationship between the RMSE and en-

semble spread is required for a good EPS. From this viewpoint, the relationships between

the RMSE and ensemble spread are investigated using daily data.

Figures 2.9–2.13 illustrate a scatter diagram of the RMSE versus the ensemble spread

for each EPS at 24-, 72-, 120-, 168-, and 216-hr lead times. Easily expected from Figs.
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2.2b and 2.6, the characteristics are different from each other. Also, even if the certain

center is paid attention, each characteristic at different lead time is different from each

other.

Figure 2.9 shows a scatter diagram at 24-hr lead time. The red, blue, green, and

yellow circles are for DJF, MAM, JJA, and SON, respectively. The spreads of the JMA

and UKMO are larger than the RMSEs of them. The scatter diagrams of the CMC

and NCEP ”stand”, that is, the magnitudes of the spreads of the CMC and NCEP are

almost same regardless of the season and magnitudes of the RMSEs. The spread of the

CMC tends to be lager (smaller) than the RMSE of CMC during the JJA (DJF) and

SON (MAM). The scatter diagram of the NCEP indicates a good relationship between

the spread and RMSE during JJA and SON, while the spread of the NCEP tends to be

smaller than the RMSE of the NCEP during DJF and MAM. In terms of the ECMWF,

the spread tend to be a little larger than the RMSE. Furthermore, the scatter diagram

of the ECMWF does not extend widely like the other centers. At 24-hr lead time, the

ECMWF seems to indicate a good relationship between the spread and RMSE.

Figure 2.10 shows a scatter diagram at 72-hr lead time. The CMC indicates a good

relationship between the spread and RMSE during JJA and SON, while the spread of the

CMC tends to be smaller than the RMSE of the CMC during DJF and MAM. The spread

of the ECMWF tends to be slightly larger than the RMSE of the ECMWF regardless of

the season, as in 24-hr lead time. The spread of the JMA is larger than the RMSE of

JMA, while the spread of the NCEP is smaller than the RMSE of the NCEP. In terms

of the UKMO, the spread is comparable to the RMSE. At 72-hr lead time, the UKMO

indicates a good relationship between the spread and RMSE regardless of the season.

Figure 2.11 shows a scatter diagram at 120-hr lead time. The scatter diagrams of

the CMC and NCEP indicate the same feature as that at 72-hr lead time. The spread

of the JMA is lager than the RMSE of the JMA, as in 24- and 72-hr lead times. The

spread of the UKMO is slightly smaller than the RMSE of the UKMO. For ECMWF, the

scatter diagram indicates a good relationship between the spread and RMSE. At 120-hr

lead time, the ECMWF seems to indicate a good relationship between the spread and
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RMSE.

Figure 2.12 shows a scatter diagram at 168-hr lead time. The scatter diagrams for

all EPS indicate the same features as that at 120-hr lead time. The ECMWF seems to

indicate a good relationship between the spread and RMSE. All EPS, however, has an

interesting common feature. The magnitude of the spread peaks out when the magnitude

of the RMSE is particularly large (e.g., over 80m). This might indicate that there is a

limit in the width of the atmospheric phenomena which the single-center ensemble can

capture. This feature also appears for the CMC, JMA, NCEP, and UKMO at 120-hr lead

time and for the CMC and NCEP at 72-hr lead time.

Figure 2.13 shows a scatter diagram at 216-hr lead time. As in the 168-hr lead time,

the NCEP and UKMO have the small spreads, compared to the RMSE. The spread of

the CMC is also smaller than the RMSE of the CMC. The ECMWF and JMA indicate a

good relationship between the spread and RMSE. However, the spread against the large

RMSE tends to be small for all EPS, as in 120- and 168-hr lead times.

In terms of the relationship between the ensemble spread and RMSE, it is found that

the ECMWF-EPS has an advantage over the other EPSs for the whole forecast range.

Also, the JMA shows a good relationship between the spread and RMSE in the medium

forecast range. The UKMO has the large and small spreads in the early and medium

forecast ranges, respectively. The CMC and NCEP tend to have the small spread in all

the forecast ranges.
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2.5 Construction of Multi-Center Grand Ensemble

As introduced in section 1, there are various types of the multi-model ensemble. It had

been difficult to construct the multi-model ensemble consisting of the operational medium-

range ensemble forecasts because of the huge data size and the internet connection speeds.

However, with the recent increase of the internet connection speeds and the beginning

of the TIGGE project, one can get operational medium-range ensemble forecast data

compared with the past. Prior to the TIGGE project, Matsueda et al. (2006, 2007)

quasi-operationally collected three medium-range ensemble forecast data: CMC, JMA,

and NCEP, and constructed the new multi-model ensembles. This new type of multi-

model ensemble is called Multi-Center Grand Ensemble (MCGE). They investigated the

forecast skills of the MCGE, and indicated that the MCGE outperforms the single-center

ensembles in terms of the deterministic and probabilistic verifications. It has been more

than one year since the TIGGE database started. One can easily get various operational

medium-range ensemble forecast data for long period. It is well known that the ECMWF

has the best forecast skill in the deterministic and ensemble forecasts, as shown in the

above subsection. With recent advancement of NWP technique, however, it is difficult for

each NWP center to develop the more skilful EPS compared with the past. It has been

recognized that new ensemble techniques: multi-model ensemble, multi-analysis ensemble

and so on, are very important to develop the more skilful EPS. This can be easily imagined

from the fact that the ECMWF, which has the best forecast skill, actively promotes the

TIGGE project which has huge ensemble data. In Matsueda et al. (2006, 2007), the

MCGE was constructed using the CMC, JMA, and NCEP medium-range ensembles,

which have a comparable forecast skill. In this study, the MCGE is constructed using

the best and second-best ensembles: CMC, ECMWF, JMA, NCEP, and UKMO. One of

the main themes in this study is ”Can MCGE outperform the ECMWF ensemble using

the operational medium-range ensemble forecast data obtained in the TIGGE database?”

The MCGEs are constructed by combining the five medium-range ensemble forecasts:

CMC, ECMWF, JMA, NCEP, and UKMO with equal weights and no bias correction.

The MCGEs created in this study are listed in Table 2.2.
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2.6 Verifications of forecast skill of Multi-Center Grand

Ensemble

2.6.1 Deterministic verifications

Figure 2.14 illustrates the RMSE skill score of the MCGEs relative to the ECMWF

ensemble for the Z500 over the NH. During DJF 2007, it is found that the MCGEs

can outperform the ECMWF ensemble at least in the medium forecast range (day 6–9).

Although the ECMWF ensemble outperforms the MCGE51 and MCGE154 up to 144-hr

lead time, the MCGE51 and MCGE154 outperform the ECMWF ensemble after 144-hr

lead time. The forecast time when the MCGE279 starts to outperform the ECMWF

ensemble is 156 hr. The seasonal RMSE is reduced by up to 2% by constructing the

MCGEs. Although the improvement in the RMSE is a few percents in the medium

forecast range, it is interesting that the MCGE51 outperforms the ECMWF ensemble by

replacing many members in the ECMWF ensemble with the members in the other centers

which are not more skillful than the ECMWF members. The disadvantage of the MCGEs

in the early forecast range might be due to the model biases. The improvement rates of

the MCGE51 and MCGE154 relative to the ECMWF ensemble are comparable to each

other, expect after 192-hr lead time. Although the introduction of the LAF method in the

MCGE279 tends to lead to degradation of the forecast skill especially in the early forecast

range, the MCGE279 has a comparable skill with the MCGE51 and MCGE154 in the

medium forecast range. This indicates that the demerit of the LAF method disappears in

the long-range ensemble forecast, as shown in the past study (Hoffman and Kalnay 1983).

Similar results are obtained for MAM 2007. The MCGEs at least outperform the

ECMWF ensemble after 156-hr lead time. The seasonal RMSE is reduced by up to 2%

by constructing the MCGEs. The MCGE154 is slightly more skilful than MCGE51 for

all forecast steps. Although the MCGE279 has the worst score in early forecast range,

the MCGE279 has a comparable skill with the MCGE51 and MCGE154 in the medium

forecast range.

A little different results are obtained for JJA 2007. The MCGE51 and MCGE154 at
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least outperform the ECMWF ensemble after 96-hr lead time, whereas the MCGE279 out-

performs it after 120-hr lead time. The seasonal mean improvement rate of the MCGE51

and MCGE154 relative to the ECMWF ensemble is roughly 2% with a slight decrease

after 120-hr lead time. Also, the MCGE154 has a slightly better skill than the MCGE51

for the whole forecast range. Although the MCGE279 starts to outperform the ECMWF

more late than the MCGE51 and MCGE154, the seasonal mean improvement rate of the

MCGE279 relative to the ECMWF after 192-hr lead time is comparable with that of the

MCGE51 and MCGE154.

During SON 2007, the effect of the MCGE seems to be small for the whole forecast

range compared to the other seasons. The forecast time when the MCGEs start to outper-

form the ECMWF ensemble is roughly 180 hr. Although the seasonal mean improvement

rate of the MCGEs relative to the ECMWF ensemble after 192-hr lead time is comparable

to that of the other seasons, the MCGEs up to 180-hr lead time have lower improvement

rate (of course, it indicates a deterioration relative to the ECMWF ensemble) than the

other seasons. As in Fig. 2.4, the ECMWF ensemble during SON 2007 had much better

forecast skill than the other single-center ensembles in the early forecast range. This may

lead to the notable disadvantage of the MCGE relative to the ECMWF ensemble in the

early forecast range.

Figure 2.15 shows daily RMSE improvement of the MCGE51 relative to the ECMWF

ensemble for 168-hr lead time. As is not shown in the other lead times, it is found that the

MCGE51 can reduce the forecast error up to approximately 20% whether the atmospheric

field is more predictable or not in the medium forecast range. Also, the forecast skill tends

to be improved when the ECMWF ensemble has especially large forecast error, whereas

the forecast skill leads to a relatively large deterioration when the ECMWF ensemble has

small forecast error. These results indicate that the MCGE can avoid the worst forecast

skill instead of abandonment of the best score.

Figure 2.16 illustrates a scatter diagram of the RMSE versus the ensemble spread

for the MCGE51 at 24-, 72-, 120-, 168-, and 216-hr lead times. In the early forecast range

of 24- and 72-hr lead times, the ensemble spread is larger than the RMSE. This result
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is easily expected from the fact that the MCGE consists of five single-center ensembles.

Also, a part of large spread might be due to large model biases in each ensemble data.

However, the ensemble spread is comparable to the RMSE with lead time. Compared with

the relationship for the ECMWF in Figs. 2.9(b)-2.13(b), the ”standing” relationship in

the ECMWF ensemble at 216-hr lead time, appearing around the maximum spread, seems

to disappear in the MCGE due to effect of multi-model.

2.6.2 Probabilistic verifications

Figure 2.17 illustrates the RPS skill score of the MCGEs relative to the ECMWF ensemble

for the Z500 over the NH. During DJF 2007, it is found that the MCGEs can outper-

form the ECMWF ensemble in at least medium forecast range, as in the deterministic

verification. The MCGE154 outperforms the ECMWF ensemble after 96-hr lead time,

whereas the others outperform the ECMWF after 120-hr lead time. The MCGE154 has

the best forecast skill in all the MCGEs for the whole forecast range. It is interesting that

the forecast time when the MCGEs start to outperform the ECMWF ensemble in the

probabilistic forecast is earlier than that in the deterministic forecast. Also, the MCGEs

reduced the seasonal RPS by up to 3%. The daily RPS can be reduced by up to 15% (not

shown). The relatively large degradation of the RPS up to 72-hr lead time might be due

to the model biases. Although the MCGE279 has the worst score in the early forecast

range, the MCGE279 has a comparable skill with the MCGE154 in the medium forecast

range. The MCGE51 has the worst score in all the MCGEs after 168-hr lead time.

During MAM 2007, the MCGEs have a comparable skill with the ECMWF ensemble

in 96-hr to 120-hr lead time, and have better skill than the ECMWF ensemble after 120-hr

lead time. The construction of the MCGE leads to the reduction of the seasonal RPS

by 4%. The daily RPS can be reduced by up to 20% (not shown). Also, the MCGE154

has the best forecast skill in all the MCGEs for the whole forecast range. Unlike DJF

2007, the MCGE279 does not have the worst score even in the early forecast range. The

MCGE51 has the worst score in all the MCGEs after 120-hr forecast time, as in DJF

2007. It is noted that the further degradations of the RPS appear at 72-hr lead time. The

model biases seem to strongly affect the forecast skill up to 72-hr lead time.

43



During JJA 2007, the effect of the MCGE appears even in the early forecast range.

However, the MCGEs become once less skilful than the ECMWF ensemble at 72-hr fore-

cast range. This feature seems to be due to the strong model biases up to 72-hr lead time.

After 120-hr lead time, the seasonal RPS is consistently reduced by up to approximately

4%. The worst score for the MCGE51 also appears after 120-hr lead time. The MCGE279

is comparable to the MCGE154 in 144-hr to 168-hr lead time, and is more skilful than

that after 168-hr lead time.

During SON 2007, the MCGEs can at last outperform the ECMWF ensemble in the

medium forecast range. In particular, the MCGE51 outperforms the ECMWF ensemble

at only 216-hr lead time. The MCGE154, which has the best skill in all the MCGEs,

has a almost comparable skill with the ECMWF in 120-hr to 156-hr lead time. After

that, the MCGE154 starts to outperform the ECMWF ensemble. The MCGE279, which

includes the LAF method, is comparable with the MCGE154 after 192-hr lead time. The

MCGE154 and MCGE279 reduce the seasonal RPS by up to 2%, whereas the MCGE51

reduces it by up to 1%. The further degradations of the RPS at 72-hr lead time also

appear. As in the deterministic verification, much better forecast skill of the ECMWF

ensemble than the other ensembles may lead to further disadvantage of the MCGE relative

to the ECMWF ensemble in the early to medium forecast ranges.
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Table 2.2: Configuration of MCGEs created in this study. Left column is an abbreviated
ensemble name. The numbers listed in the table are ensemble size of each single-center
ensemble included in each MCGE. The numbers in parentheses indicate initial UTC.

CMC ECMWF JMA NCEP UKMO
Name (UTC) (UTC) (UTC) (UTC) (UTC)

MCGE51 11 (12) 10 (12) 10 (12) 10 (12) 10 (12)
MCGE154 17 (12) 51 (12) 51 (12) 11 (12) 24 (12)
MCGE279 34 (00, 12) 102 (00, 12) 51 (12) 44 (18, 00, 06, 12) 48 (00, 12)
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Z500 120hr Forecast Skill (200612-200711: NH 5day running mean)

(a) Control Run
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Z500 120hr Forecast Skill (200612-200711: NH 5day running mean)

(b) Ensemble Mean
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Fig. 2.2: Time series of 120-hr RMSEs of (a) five single-center control runs and (b) five
single-center ensemble mean forecasts for 500 hPa height over the Northern Hemisphere
(20◦N–90◦N) from December 2006 to November 2007. Yellow, blue, red, green, and purple
solid lines are for CMC, ECMWF, JMA, NCEP, and UKMO, respectively. 5-days running
mean is applied for each solid line.
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Comparison of Ensemble Mean Forecasts
Z500 RMSE (2007DJF: NH)
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Comparison of Ensemble Mean Forecasts
Z500 RMSE (2007MAM: NH)
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Fig. 2.3: Skills of five single-cener control and ensemble mean forecasts for 500 hPa height
over the Northern Hemisphere (20◦N–90◦N) from December 2006 to February 2007 (up-
per) and from March 2007 to May 2007 (lower). Yellow, blue, red, green, and purple solid
lines are for CMC, ECMWF, JMA, NCEP, and UKMO, respectively.
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Comparison of Ensemble Mean Forecasts
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Fig. 2.4: Same as Fig. 2.3, but for (upper) from June 2007 to August 2007 and (lower)
from September 2007 to November 2007.
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Fig. 2.5: Ensemble mean (full lines, with a contour interval of 120m) and spread (shading)
of CMC, ECMWF, NCEP, UKMO, and JMA for 500 hPa height, initialized on 17th
November 2007, valid at 12 UTC on 22nd November 2007. The last panel shows the
ECMWF analysis.
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Z500 120hr Ensemble Spread (200612-200711: NH 5day running mean)
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Fig. 2.6: Time series of 120-hr ensemble spreads of five single-center ensemble fore-
casts; CMC (yellow), ECMWF (blue), JMA (red), NCEP (green), and UKMO (purple),
for 500 hPa height over the Northern Hemisphere (20◦N–90◦N) from December 2006 to
November 2007. 5-days running mean is applied for each solid line.
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Comparison of Ensemble Forecasts
Z500 Ensemble Spread (2007DJF: NH)
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Fig. 2.7: Ensemble spreads of single-center ensemble forecasts; CMC (yellow), ECMWF
(blue), JMA (red), NCEP (green), and UKMO (purple), for 500 hPa height over the
Northern Hemisphere (20◦N–90◦N) from December 2006 to February 2007 (upper) and
from March 2007 to May 2007 (lower).
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Comparison of Ensemble Forecasts
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Fig. 2.8: Same as Fig. 2.7, but for (upper) from June 2007 to August 2007 and (lower)
from September 2007 to November 2007.
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(a) CMC RMSE vs Spread
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(b) ECMWF RMSE vs Spread
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(c) JMA RMSE vs Spread
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(d) NCEP RMSE vs Spread
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(e) UKMO RMSE vs Spread
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Fig. 2.9: Scatter diagrams of the RMSE versus the ensemble spread of (a) CMC, (b)
ECMWF, (c) JMA, (d) NCEP, and (e) UKMO for 500 hPa height over the Northern
Hemisphere (20◦N–90◦N) at 24-hr lead time from December 2006 to November 2007.
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(a) CMC RMSE vs Spread
200612-200711: NH (+072 hr)
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(b) ECMWF RMSE vs Spread
200612-200711: NH (+072 hr)
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(c) JMA RMSE vs Spread
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(d) NCEP RMSE vs Spread
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(e) UKMO RMSE vs Spread
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Fig. 2.10: Same as Fig. 2.9, but for at 72-hr lead time.
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(a) CMC RMSE vs Spread
200612-200711: NH (+120 hr)
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(b) ECMWF RMSE vs Spread
200612-200711: NH (+120 hr)
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(c) JMA RMSE vs Spread
200612-200711: NH (+120 hr)
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(d) NCEP RMSE vs Spread
200612-200711: NH (+120 hr)
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(e) UKMO RMSE vs Spread
200612-200711: NH (+120 hr)
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Fig. 2.11: Same as Fig. 2.9, but for at 120-hr lead time.
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(a) CMC RMSE vs Spread
200612-200711: NH (+168 hr)
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(b) ECMWF RMSE vs Spread
200612-200711: NH (+168 hr)
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(c) JMA RMSE vs Spread
200612-200711: NH (+168 hr)
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(d) NCEP RMSE vs Spread
200612-200711: NH (+168 hr)
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(e) UKMO RMSE vs Spread
200612-200711: NH (+168 hr)
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Fig. 2.12: Same as Fig. 2.9, but for at 168-hr lead time.
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(a) CMC RMSE vs Spread
200612-200711: NH (+216 hr)

DJF
MAM
JJA
SON

20

30

40

50

60

70

80

90

100

110

120
R

M
S

E
 [m

]

20 30 40 50 60 70 80 90 100110120
Spread [m]

(b) ECMWF RMSE vs Spread
200612-200711: NH (+216 hr)
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(c) JMA RMSE vs Spread
200612-200711: NH (+216 hr)
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(d) NCEP RMSE vs Spread
200612-200711: NH (+216 hr)
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(e) UKMO RMSE vs Spread
200612-200711: NH (+216 hr)
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Fig. 2.13: Same as Fig. 2.9, but for at 216-hr lead time.
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Comparison of Ensemble Mean Forecasts
Z500 at NH grids
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Fig. 2.14: Relative improvement (%) in seasonal RMSE of MCGEs against ECMWF51
for 500 hPa height over the Northern Hemisphere (20◦N–90◦N) from December 2006 to
February 2007 (a), from March 2007 to May 2007 (b), from June 2007 to August 2007
(c), and from September 2007 to November 2007 (d). Red, green, and blue solid lines are
for MCGE51, MCGE154, and MCGE279, respectively.
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168hr RMSE for Z500 at NH grids
ECMWF51 vs MCGE51
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Fig. 2.15: Percent improvement in daily 168-hr RMSE of MCGEs against ECMWF en-
semble for 500 hPa height over the Northern Hemisphere (20◦N–90◦N) from December
2006 to February 2007 (a), from March 2007 to May 2007 (b), from June 2007 to August
2007 (c), and from September 2007 to November 2007 (d).
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MCGE51 RMSE vs Spread
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MCGE51 RMSE vs Spread
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Fig. 2.16: Scatter diagram of the RMSE versus the ensemble spread of MCGE51 for
500 hPa height over the Northern Hemisphere (20◦N–90◦N) at 24-, 72-, 120-, 168-, and
216-hr lead times from December 2006 to November 2007.

61



Comparison of Ensemble Probabilistic Forecasts
Z500 at NH grids
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Fig. 2.17: Relative improvement (%) in seasonal RPS of MCGEs against ECMWF ensem-
ble for 500 hPa height over the Northern Hemisphere (20◦N–90◦N) from December 2006
to February 2007 (a), from March 2007 to May 2007 (b), from June 2007 to August 2007
(c), and from September 2007 to November 2007 (d). Red, green, and blue solid lines are
for MCGE51, MCGE154, and MCGE279, respectively.
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Chapter 3

Analyses of extreme event using
ensemble forecast data

In this chapter, an ensemble-based simple sensitivity analysis and ensemble simulations

are performed against an atmospheric blocking shown in Matsueda et al. (2007) using

the operational medium-range ensemble forecast data.

3.1 Data and method

3.1.1 Ensemble forecast data

In this chapter, three operational medium-range ensemble forecast data: CMC, JMA, and

NCEP, are used. The details of these EPS as of December 2005 are summarized in Table

3.1. The horizontal resolution of the forecast model is comparable to each other. Both

JMA and NCEP used the BV method as the initial perturbation, and the CMC used the

EnKF method. Compared with Table 1.1, one can find the remarkable progresses of the

operational ensemble forecast along with the progress of computer science. The ensemble

size of each center doubled in about two years.

3.1.2 Ensemble-based sensitivity analysis

Enomoto et al. (2007) proposed a SV-like simple sensitivity analysis using ensemble

forecast data. This method does not need the numerical prediction model and adjoint
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code, and needs only ensemble forecast data that has already been calculated. Using

this technique, the sensitivity area in the prediction of atmospheric phenomenon can

be identified. The detail is as follows. A goal of this technique is to find the initial

perturbation which grows up fastest, that is, y in Fig. 3.1. The liner time evolution of y

is represented as follows:

z = My. (3.1)

Also, the liner time evolution for each ensemble member is assumed

zi = Myi, i = 1, 2, · · · , n, (3.2)

where zi is the forecast departure from the control run at a target lead time for i th

member, yi is the initial perturbation for i th member. Consider the initial perturbation

y by a linear combination of the original initial perturbations:

y = p1y1 + p2y2 + · · ·+ pnyn. (3.3)

Using matrix notations:

Y = (y1 y2 · · · yn), Z = (z1 z2 · · · zn), p = (p1 p2 · · · pn)>, (3.4)

equations (3.2) and (3.3) may be written as

Z = MY, (3.1′)

y = Yp, (3.2′)

and then equation (3.1) may be written as

z = My = MYp = Zp. (3.5)

The constrained maximization problems can be solved using the Lagrange’s method of

undetermined multipliers. Lagrangian function and its variations are represented as fol-

lows:

F(p, λ) = < z, z > +λ(1− < y, y >)

= < Zp, Zp > +λ(1− < Yp, Yp >), (3.6)

δF(p, λ) = 2 < δp, Z>Zp − λY>Yp > −δλ(1− < Yp, Yp >). (3.7)
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As a result, it is only necessary to solve the eigenvalue problem:

(Y>Y)−1Z>Zp = λp (3.8)

The size of matrix (Y>Y)−1Z>Z is the ensemble size. This problem can be solved easily.

If each initial perturbation is mutually orthogonal and has the same norm, (Y>Y)−1

becomes a scalar matrix. It is only necessary to perform the singular value decomposition

of the matrix Z. It is noted that one can use only a half of original initial perturbations

if the NWP center uses the positive-negative perturbation pairs.

3.1.3 Multi-analysis ensemble forecasts

Based on the ensemble-based simple sensitivity analysis, multi-analysis ensemble forecasts

were performed using the JMA Global Spectral Model (JMA-GSM; JMA 2007). The GSM

used in this study is same as the operational GSM used in the current JMA-EPS. The

horizontal resolution of JMA-GSM is TL159L40. The JMA-GSM used in this study is

a semi-Lagrangian model, whereas the operational JMA-GSM as of December 2005 was

not.

3.2 Target blocking

The target blocking shown in Matsueda et al. (2007) occurred over the Rocky Mountain

at 12 UTC on 15th December 2005. The mature time of this blocking was 18th December

2005. This blocking did not persist for a long time, and decayed within several days.

Ensemble forecasts initialized at 12 UTC on 10th December 2005, was very interesting.

Figure 3.2 illustrates the spaghetti diagrams of the Z500 for the CMC, JMA, and NCEP

ensemble forecasts and JMA analysis, at 0-hr to 120-hr lead times. The initial times are

12 UTC on 10th December 2005 for the JMA and NCEP, and 00 UTC on 10th December

2005 for the CMC. Until 48-hr lead time, it is found that each ensemble member captured

the analysis well. However, at 72-hr lead time, the NCEP members started to mis-predict

the blocking. At 96-hr lead time, the NCEP members predicted the ridge of the blocking

more upstream than the analysis. At 120-hr lead time, all NCEP members predicted
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the wrong location of the blocking (Fig. 3.5), whereas the JMA members and most of

the CMC members predicted the right location of the blocking. Interestingly, most of

the CMC members initialized at 00 UTC on 11th December 2005 and a half of the JMA

members initialized at 12 UTC on 11th December 2005 predicted the wrong location of the

blocking (not shown), as in the NCEP members initialized at 12 UTC on 10th December

2005. In order to identify the cause of the NCEP’s collective mis-prediction initialized

at 12 TUC on 10th December 2005, the simple sensitivity analysis and multi-analysis

ensemble forecasts were performed.

3.3 Comparison of control runs

Based on the fact that almost all JMA members predicted the right location of the blocking

and all NCEP members predicted the wrong location of the blocking, the time evolution of

each control run is first focused on. Figure 3.3 illustrates the time evolution of (a) the JMA

analysis, (b) the JMA control run, (c) the NCEP control run, and (d) the JMA-GSM run

with the NCEP control analysis up to 120-hr lead time. It must be noted that the RMSE

shown in each panel was calculated over the blocking region (170◦E–260◦E, 20◦N–80◦N).

It is found that the JMA control run (b) predicted the location of the blocking correctly

(of course, the JMA control run was not the perfect forecast). The time evolution of the

NCEP control run (c) is almost similar to that of the JMA control run (b) until 48-hr lead

time. After 48-hr lead time, however, the time evolution of the NCEP control run is quite

different from that of the JMA control run. At 72-hr lead time, positive and negative

forecast errors, located over the north Pacific at 48-hr lead time, developed further. These

forecast errors were not shown in the JMA control run. It is found that the origin of these

forecast errors occurred in the NCEP control run at 24-hr lead time. The negative forecast

error at 72-hr lead time corresponded to a cyclone (Fig. 3.9). Also, there was a small

negative forecast error over the Rocky Mountain. In the JMA control run, this forecast

error appeared not over the Rocky Mountain but over the south of Alaska. Although the

location of these negative forecast errors was different from each other, the origin of these

negative forecast error seems to be located over the south of Alaska at 48-hr lead time. At
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96-hr lead time, the blocking predicted by the NCEP control run started to develop more

upstream than that of the analysis. The negative forecast error over the Rocky Mountain

at 72-hr lead time rapidly developed with its southward travel, and seems to block the

eastward shift of the blocking ridge. On the other hand, the negative forecast error over

the south of Alaska in the JMA control run seems to remain there due to the ridge of

developing blocking. The negative error in the NCEP control run further developed until

120-hr lead time, and generated the blocking with remarkable meandering. Although the

JMA control run had large positive bias around the blocking region, the location of the

blocking was predicted correctly. The 120-hr RMSE of the NCEP control run was about

1.7 times that of the JMA control run.

3.4 Multi-analysis ensemble forecasts with NCEP an-

alyses

Second, the multi-analysis ensemble forecasts were conducted with the JMA-GSM (TL159

L40) using the NCEP control and perturbed analyses. If the NCEP members on the JMA-

GSM cannot predict the right location of blocking accurately, it can be concluded that

the main cause of the NCEP’s collective mis-prediction was due to the initial condition

of the NCEP.

The characteristics shown in the NCEP control run were also shown in the JMA-

GSM run with the NCEP control analysis (Fig. 3.3d). Despite the change of the numerical

model, the NCEP control analysis on the JMA-GSM (d) led to a wrong prediction of the

location of the blocking. It can be concluded that one of the causes of the collective mis-

prediction of the blocking is due to the NCEP control analysis at the initial time. It is,

however, interesting that the 120-hr RMSE of the JMA-GSM run with the NCEP control

analysis is smaller than that of the NCEP original control run. This might indicate the

decreases of the imperfection of the model formulation by introduction of other numerical

models.

For the JMA-GSM runs with the NCEP perturbed analyses, it is found that all of

them were not able to predict the right location of the blocking (Fig. 3.4), as in the NCEP
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original perturbed runs. However, the JMA-GSM runs with the NCEP analyses predicted

the location of the blocking somewhat accurately than the NCEP original runs, but more

inaccurately than the JMA original runs. In fact, as shown in Table 3.2, the JMA-GSM

runs with the NCEP analyses, except for 02m, 03m, and 05p (m and p indicate ensemble

member in which the initial perturbation is subtracted from and added to the control run,

respectively), had better forecast skill over the blocking region than the NCEP original

perturbed runs. This result also might indicate the decreases of the imperfection of the

model formulation.

3.5 Ensemble-based sensitivity analysis

In the previous section, it was found that the collective mis-prediction resulted from the

initial value of the NCEP members. In order to detect the sensitivity area against the

blocking, the ensemble-based sensitivity analysis was performed. In this study, the dry

total energy norm (Talagland 1981; Ehrendorfer and Errico 1995) was used:

TE =
1

2

∫∫

A

u′2 + v′2 +
cp

Tr

T ′2 + RTr

(
p′s
pr

)2

dAdp, (3.9)

where u′, v′, T ′, and p′s are perturbed components of zonal and meridional velocity,

temperature, and surface pressure, respectively, cp the specific heat at constant pressure, R

the gas constant for dry air, Tr (=300K) and pr (=800 hPa) are the reference temperature

and pressure. The target area is set to 190◦E–250◦E, 30◦N–75◦N, and 1000–200 hPa. The

target time is set to 12 UTC on 15th December 2005, that is, 120-hr lead time.

Figure 3.6 illustrates the sensitivity area measured by vertically integrated dry total

energy norm obtained from the JMA ensemble data. There are well-defined signals over

the central north Pacific. These signals exist at each pressure level for each component

(Fig. 3.7). This region, 150◦E–190◦E, 30◦N–50◦N, was defined as the sensitivity area.

In this sensitivity area, it is found that the difference between the JMA and NCEP

control analyses at 12 UTC on 10th December 2005 measured by the dry total energy

norm is relatively larger than the other areas (Fig. 3.8). In other words, the sensitive

area had large uncertainty. The difference seems to be due to a cut-off cyclone (Fig. 3.9).
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The difference between the JMA and NCEP control analyses at the center of the cut-

off cyclone (180◦E, 40◦N) was about 4 hPa at 12UTC on 10th December. The difference

reached about 8 hPa at 48-hr lead time. After 72-hr lead time, the cut-off cyclone traveled

quite different direction from each other. The cut-off cyclone simulated by the NCEP

control run traveled toward the southeast, whereas that simulated by the JMA control

run traveled toward the northeast. The southeast travel of the cyclone predicted by the

NCEP control run can be detected in the Z500 field (Fig. 3.3). It might be considered

that the synoptic field around the cyclone over the central north Pacific at 12 UTC on

10th December affected the blocking formation. In fact, the AFES-LETKF Experimental

Re-Analysis (ALERA; Miyoshi et al. 2007) shows large analysis error, that is, large

uncertainty around the cyclone (Fig. 3.10).

3.6 Multi-analysis ensemble forecasts with amplified

initial perturbations

It was suggested in the previous section that the NCEP control analysis had a weaker

cyclone than the JMA control analysis, and the cyclone affected the blocking formation.

However, even if the control analysis has large initial uncertainty, there is a possibility that

the initial perturbations in the ensemble forecast reduced it. Figure 3.11 illustrates the

dry total energy for the NCEP initial perturbations at 12 UTC on 10th December 2005.

It is found that the initial perturbations: 02 and 03, did not have well-defined signals

around the cyclone. Also, even if there are any signals around the cyclone (perturbations

01, 04 and 05), the amplitude of the initial perturbation seems to be small compared with

the analysis difference shown in Fig. 3.8. Base on the fact that there is large uncertainty

in the sensitivity area, these results might suggest that the NCEP ensemble did not

have effective initial perturbations to predict the blocking formation more accurately. As

described in the previous chapter, the NCEP has smaller initial perturbations than the

other EPSs. There is a possibility that amplification of the initial perturbation leads to

the improvement of the forecast skill at least in this case.

Based on the ensemble-based sensitivity analysis, the multi-analysis ensemble fore-
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casts were performed. First, the amplitude of the NCEP initial perturbations was globally

increased by a factor of 1.5. The fourth column in Table 3.2 shows the 120-hr RMSE for

the Z500 over the blocking region (170◦E–260◦E, 20◦N–80◦N). Compared with the third

column in Table 3.2, it is found that for most of runs the global amplification led to the

improvement in the RMSE over the blocking region. However, the global amplification of

initial perturbations led to the degradation of the forecast over the Northern Hemisphere

(Table 3.3). Compared with the third and fourth columns in Table 3.3, it is found that the

global amplification led to worse skill, on the hemispherical scale, than the JMA-GSMs

with the original amplitude, except for 04p and 05p.

Based on these results, additional multi-analysis ensemble forecasts with regionally

amplified initial perturbations were performed. The amplitude of the NCEP initial per-

turbation was increased by a factor of 1.5 only over the sensitivity area. If the regional

amplification led to the improvement of the forecast over the blocking region, it can be

concluded that the sensitivity area is a key component of the prediction of the blocking.

For many members, the regional amplification reduced forecast error over the blocking

region without the degradation of the forecast skill over the Northern Hemisphere (see

the fifth columns in Tables 3.2 and 3.3). This indicates that the amplification of the per-

turbations over the sensitivity area was essential for the improvement of the prediction

of the blocking. The perturbed members: 01p, 02p, 04m, and 05m, with the regionally

amplified perturbations have the lowest RMSE over the blocking region. It is found the

predicted location of the blocking in these members was closer to the analysis than that

in the NCEP original ones (Fig. 3.12). These members did not have well-defined negative

forecast error shown in the NCEP original EPS. This seems to enable the blocking ridge to

shift somewhat eastward. In terms of the ensemble mean, the improvement of the forecast

by the regional amplification is also obvious (Fig. 3.13). These results indicate that the

sensitivity area was a key component of the prediction of the blocking. They also indi-

cate that the excessive amplification of the initial perturbation over non-sensitivity area

is undesirable and that the regional amplification technique can lead to better forecast

without the degradation of the forecast over the other area.
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Table 3.1: Operational medium-range ensemble prediction system at CMC, JMA, and
NCEP as of December 2005.

CMC JMA NCEP
Canada Japan US

Multi-Model
Model Uncertainty Stoch. Phys. NO NO
Initial Perturbation EnKF BVs BVs+LAF

TL149L23-41 T106L40 T126L28
Forecast Model Resolution 1.2degL28

Initial UTC 00 12 00, 06, 12, 18
Forecast Length 240hr 216hr 0-180hr (6hr)

(interval) (12hr) (12hr) 180-384 (12hr)
Member/run 17 25 11
Member/day 17 25 44
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Table 3.2: 120-hr RMSEs of NCEP-EPS and JMA-GSM runs with NCEP analyses for
500 hPa height over the blocking region (170◦E–260◦E, 20◦N–80◦N).

20051210 NCEP original JMA-GSM runs with NCEP analyses
12UTC+120hr EPS Amp: 1.0 Amp: 1.5 Amp: 1.5area

00 139 122 - -
01p 143 95.6 84.1 81.9
01m 123 115 136 128
02p 131 71.7 71.3 61.9
02m 103 111 101 110
03p 143 127 141 134
03m 100 140 151 138
04p 148 102 89.5 93.7
04m 88.3 73.9 68 56.5
05p 116 125 98.4 101
05m 128 68.9 63.7 63.1

Ensemble Mean 117 91.1 78.0 79.6

JMA ensemble Mean: 61.6m　　　　

Table 3.3: 120-hr RMSEs of NCEP-EPS and JMA-GSM runs with NCEP analyses for
500 hPa height over the Northern Hemisphere (20◦N–90◦N).

20051210 NCEP original JMA-GSM runs with NCEP analyses
12UTC+120hr EPS Amp: 1.0 Amp: 1.5 Amp: 1.5area

00 96.9 87.1 - -
01p 104 79.0 82.6 75.8
01m 90.8 104 122 109
02p 102 69.0 88.3 66.5
02m 82.7 97.0 104 97.4
03p 110 105 117 108
03m 79.1 87.5 95.5 86.8
04p 99.3 79.9 78.3 78.6
04m 81.2 67.0 72.9 63.1
05p 96.3 87.6 76.4 80.2
05m 98.5 78.4 85.7 76.2

Ensemble Mean 85.8 72.5 70.7 69.1

JMA ensemble Mean: 57.1m　　　　
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Fig. 3.1: Conceptual diagram of phase space on disturbance.
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Fig. 3.2: Spaghetti diagrams of 500 hPa height (5500m) for ensemble members of CMC
(yellow), JMA (red), and NCEP (green), initialized at 00 UTC (CMC) or 12 UTC (JMA
and NCEP) on 10th December 2005, valid 12 UTC on 15th December 2005. Thin solid
line is for each ensemble member forecast and thick solid line for JMA analysis at the
valid time.
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Fig. 3.3: Time evolution of 500 hPa height (contour) and its forecast error (shaded) for
(a) JMA analysis, the control runs of (b) JMA and (c) NCEP, and (d) JMA-GSM run
with NCEP control analysis. The initial time is 12 UTC on 10th December 2005.
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Fig. 3.4: Spaghetti diagrams of 500 hPa height (5500m) for JMA-GSM runs with NCEP
control and perturbed analyses from 12 UTC on 10th December 2005, valid 12 UTC on
15th December 2005. Thin solid line is for each ensemble member forecast and thick solid
line for the NCEP analysis at the valid time.
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Fig. 3.5: 120-hr forecast of 500 hPa height (contour) and its forecast error (shaded) for
NCEP original control and perturbed runs from 12 UTC on 10th December 2005. RMSE
is calculated over the blocking region (170◦E–260◦E, 20◦N–80◦N).
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Fig. 3.6: Sensitivity area obtained from JMA ensemble forecast initialized at 12 UTC on
10th December 2005. The target time is 12 UTC on 15th December 2005, that is, 120-hr
lead time. The target area is surrounded by black solid line.
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Fig. 3.7: Same as Fig. 3.6, but for components, u′, v′, T ′, and p′s at each pressure level.
The sensitivity area is surrounded by black solid line.
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Fig. 3.8: Initial difference between JMA and NCEP analyses at 12 UTC on 10th December
2005 measured by dry total energy. The sensitivity area is surrounded by black solid line.
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Fig. 3.9: Time evolution of sea level pressure for JMA (red) and NCEP (green) control
runs. The sensitivity area is surrounded by black solid line.

81



Fig. 3.10: Sea level pressure (contour) and its analysis error (shaded) based on AFES-
LETKF Experimental Re-Analysis (ALERA) at 12 UTC on 10th December 2005.
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Fig. 3.11: Dry total energy for NCEP initial perturbations at 12 UTC on 10th December
2005. The sensitivity area is surrounded by black solid line.
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Fig. 3.12: 120-hr forecast of 500 hPa height (contour) and its forecast error (shaded)
for JMA-GSM runs with NCEP analyses with the regionally amplified perturbations,
initialized at 12 UTC on 10th December 2005. The initial perturbations only in the
sensitivity area were amplified by a factor of 1.5.
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Fig. 3.13: 120-hr ensemble mean forecasts of 500 hPa height (contour) and its forecast
error (shaded) for (a) NCEP original ensemble forecast, (b) JMA-GSM runs with NCEP
analyses, (c) same as (b) but for globally amplified perturbations by a factor of 1.5, (d)
same as (b) but for regionally amplified perturbations by a factor of 1.5, initialized at 12
UTC on 10th December 2005. RMSE is calculated over the blocking region (170◦E–260◦E,
20◦N–80◦N).
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Chapter 4

Discussion

4.1 Construction method of Multi-Center Grand En-

semble

In this study, the MCGEs were constructed for the Z500 with equal weights among ensem-

ble members and no bias correction. More than 1 year has passed since the TIGGE data

archive started. The data accumulation by all NWP centers has just started. Although

it was difficult to obtain the operational ensemble forecast data quasi-operationally due

to the huge data size before the TIGGE project, one can easily obtain the operational

ensemble forecast data quasi-operationally from the TIGGE data archives. As shown in

Chapter 2, it has been possible to compare the single-center ensembles all over the world,

and the forecast skills and forecast characteristics have been revealed. In order to con-

struct better MCGEs, the appropriate weights among the members and bias correction

might be needed. Especially in the MCGEs for the surface components, such as tempera-

ture at 2 m, U and V winds at 10 m, and precipitation, the weights among members and

bias correction might be very important. In fact, the basic research on the combine meth-

ods was performed using the low-order Lorenz 1963 model (Johnson 2006). However, the

data period is not enough to estimate the weights and bias correction appropriately. This

might be easily expected from the following example. For example, the low-frequency

variability, such as the Arctic Oscillation and atmospheric blocking, dominated in the

previous winter, and the low-frequency variability does not dominate in this winter. In

this case, it is obvious that it is not appropriate to apply the weights and bias estimated
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from the data in the previous winter to the ensemble data in this winter. Through the

TIGGE project, we have to investigate which atmospheric fields are more predicted and

biased or not for each single-center ensemble. Also, to avoid the deficiency of enough en-

semble data obtained from TIGGE portal, introduction of the Kalman filter into the bias

correction technique might be possible. The Kalman filter technique repeatedly learns

the information of the model bias obtained until immediately before, and updates it. So,

the model bias derived from the Kalman filter might be more appropriate for the bias

correction than the model bias based on the past same season.

Also, the ECMWF analysis was used in the verifications of the ECMWF ensemble

and MCGEs. Each ensemble member of each NWP center was integrated on its own

numerical model. Although the model climate of each numerical model is similar to each

other, there are some differences between them. In other words, each model climate has

some biases not only against the climate of its own model but also against the climate

of the ECMWF model. In this respect, the comparison of the skills of the ECMWF

ensemble and MCGEs in this study is advantageous for the ECMWF ensemble. The bias

correction of the CMC, JMA, NCEP, and UKMO against the ECMWF analysis might

lead to further improvement in the skill of the MCGEs. The development of methods

of the weights and bias correction in the MCGE is one of the objectives of the TIGGE

project. As shown in the Fig. 1.2, due to the rapid developments of the NWP technologies,

it tends to be difficult for each single-center ensemble to improve the skill of the ensemble

forecast in the last few years. This is easily expected from the fact that the ECMWF,

having the best forecast skill in the world, actively promotes the TIGGE project. In

spite of the simplest MCGEs with equal weights and no bias correction, it is remarkable

that the MCGE can outperform the ECMWF ensemble at least in the medium forecast

range. Also, it is valuable that the improvement rate of the MCGE against the ECMWF

ensemble is almost comparable with that in the single-center ensemble forecast during the

latest few years.
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4.2 Identification of causes of forecast error and ini-

tial perturbation method

In Chapter 3, the collective mis-prediction of the blocking in the NCEP ensemble was

shown. In order to identify the cause of the collective mis-prediction, the ensemble data,

which is enough to conduct multi-analysis ensemble forecasts, was provided by Dr. Toth

and Dr. Woubs. The total data size provided is 500GB. Recent internet speed enables us

to transfer the huge ensemble forecast data. Such collaborations among the NWP centers

and universities is one of the objectives of the TIGGE project.

It is found that the collective mis-prediction mainly resulted from the NCEP control

analysis over the central north Pacific at 12 UTC on 10th December. The initial condition

seems to be related to a cut-off cyclone. The difference of the DA system between the

JMA and NCEP seems to appear remarkably due to the cut-off cyclone. Without the

collaboration between the JMA and NCEP, it is difficult to identify the causes of the

analysis differences. Many causes of the difference might be considered. For example, if

a part of the observation and satellite data used in the JMA DA system were not used

in the NCEP DA system, this might lead to the difference of the initial data around the

cut-off cyclone. Possibly, by using a particular data, not used in the NCEP DA system

but used in the JMA DA system, in the NCEP DA system, the initial difference related

to the cut-off cyclone might be improved. In fact, the JMA DA system used 5 aircraft, 10

buoy, and 2 ship data around the cyclone over the sensitivity area when the global early

analysis was made (Mr. Iriguchi and Dr. Miyoshi, personal communication). If these data

were not used in the NCEP DA, these data can affect the control analysis of the JMA. In

the interactive forecast system aimed by the THORPEX, after the identification of the

sensitivity area against a target area using the SV method, an aircraft is driven to observe

meteorological components over the sensitivity area, and then the DA is performed again

with these new data, and reforecasts are performed. Yamaguchi et al. (2008) showed

the improvement in the predicted typhoon track by the interactive forecast system for the

2004 DOTSTAR (Dropwindsonde Observation for Typhoon Surveillance near the TAiwan

Region; Wu et al. 2007) cases. If additional JMA-GSM experiment using the JMA control
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analysis made without the aircraft, buoy, and ship data shows same result as the NCEP

original control run, it can be concluded that these data was essential for the analysis

difference between the JMA and NCEP.

On the other hand, even if the control analysis has large uncertainty, there is a

possibility that the initial perturbations of the ensemble forecast reduce it. However, the

NCEP-EPS has smaller initial perturbation than the other EPSs in general. The initial

perturbations seem to not reduce the initial uncertainty of the control analysis. As a re-

sult, all perturbed members predicted the wrong location of the blocking, as in the control

run. Although the JMA-GSM runs with the NCEP analyses led to a little improvement

in terms of the location of the blocking, the RMSE over the blocking region decreased

for many members. This indicates the advantage of the multi-model and multi-analysis

ensembles. In the near future, the multi-analysis ensemble forecast might be performed

operationally. Also, additional ensemble forecasts with regionally amplified initial per-

turbations over the sensitivity area lead to the further improvement of the location of

the blocking without the degradation of the forecast over the Northern Hemisphere. The

NCEP plans to derive case dependent estimates from operational Gridpoint Statistical

Interpolation (GSI) analysis, and use that when rescaling the initial ET perturbation (Dr.

Toth, personal communication). The result in this study shows that such an approach

may really have value as compared to climatologically based rescaling that is used widely.
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Chapter 5

Conclusion

The NWP technique has progressed rapidly along with the development of the computer

science. A five-day weather forecast today is as reliable as a three-day weather forecast 25

years ago which is a major scientific advance. Recently, the ensemble forecast has become

a major component of the operational global weather prediction systems, and has drawn

more attention in various timescales, such as short-, medium-, and long-ranges for both

operational and research purposes.

The WMO began THe Observing system Research and Predictability experiment

(THORPEX) project in 2005 in order to accelerate improvements in the accuracy of one-

day to two-week high-impact weather forecasts for the benefit of society, the economy, and

the environment. The THORPEX establishes an organizational framework that addresses

weather research and forecast problems whose solutions will be accelerated through in-

ternational collaboration among academic institutions, operational forecast centers, and

users of forecast products. At the heart of the THORPEX is the research needed for

the design and demonstration of a global interactive forecasting system that allows infor-

mation to flow interactively between the forecast users, numerical forecast models, DA

systems, and observations.

The THORPEX Interactive Grand Global Ensemble (TIGGE), which is a key com-

ponent of the THORPEX, has enabled us to get operational medium-range ensemble

forecast data quasi-operationally, to compare the medium-range ensemble forecasts, to

construct the new ensemble forecast, and to analyze extreme events.
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In this study, first, the overall intercomparisons of five operational medium-range

ensembles: CMC, ECMWF, JMA, NCEP, and UKMO, were performed. In the deter-

ministic verifications of each control run and each ensemble mean forecast, the daily and

seasonal RMSE for 500 hPa geopotential height (Z500) over the Northern Hemisphere

(NH, 20◦N–90◦N) from December 2006 to November 2007 were used.

In terms of the control runs, although the daily RMSEs are different from each other,

the daily RMSEs tend to show similar variations along the atmospheric flow throughout

the verification period. The ECMWF control run had the lowest RMSE until 168-hr lead

time for all season. In particular, the ECMWF is far superior to the other centers in the

early forecast range (day 0–3). The ECMWF control run was most skillful for all lead

time in winter, but is comparable with the other control runs after 168-hr lead time in

other seasons. The CMC control run had the largest RMSE for all season and all lead

time. The JMA control run tended to have second-worst forecast skill for all season and

all lead time. The NCEP control run tended to have better RMSE than the UKMO, and

have sometimes comparable RMSE with the ECMWF in the medium forecast range.

In terms of the ensemble mean forecast, the ECMWF ensemble was most skillful

for all season and all lead time. Especially in the autumn season, the ECMWF is far

superior to the other centers. The second-best centers depended on the seasons. There

seem to be no apparent differences among the forecast skills of the JMA, NCEP, and

UKMO throughout the season. Although the CMC had largest RMSE in DJF 2007 and

MAM 2007, the CMC is comparable with the JMA, NCEP, and UKMO after the system

upgrade of the CMC-EPS on 9th July 2007. Based on these results, the CMC, JMA,

NCEP, and UKMO can be considered as the second-best center.

The ensemble spreads of the single-center ensemble were also investigated. The JMA

and NCEP ensembles have the largest and lowest spread for all seasons, respectively. The

spread of the ECMWF showed good agreement with the RMSE of the ECMWF for almost

all forecast range. In the medium forecast range, however, the spread against the large

RMSE tended to be too small for all EPS.

Second, MCGEs were constructed using five medium-range ensemble forecasts: CMC,
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ECMWF, JMA, NCEP, and UKMO. The forecast performance of the MCGEs relative to

the ECMWF ensemble, having the best forecast skill in the world, was investigated using

seasonal Root Mean Square Error (RMSE) and Ranked Probability Score (RPS) for the

Z500 over the NH from December 2006 to November 2007.

As a result, it was found in the deterministic and probabilistic verifications that the

MCGEs can outperform the ECMWF ensemble at least in the medium forecast range (day

6–9) for all seasons. The forecast time when the MCGEs first outperform the ECMWF

ensemble is somewhat different depending on the season. During the summer season, the

advantage of the MCGEs appears as early as at +4 day forecast time. The improvements

in the RMSE and RPS are several percentage points in the medium forecast range. These

are almost comparable with the rate of improvement in a single-center ensemble forecast

during the latest few years.

In the early forecast range, the ensemble spread of the MCGE was larger than the

RMSE as expected easily. The ensemble spread of the MCGE showed good agreement

with the RMSE in the medium-range forecast range.

Third, the analysis of an extreme event, atmospheric blocking, was performed using

ensemble forecast data, ensemble-based simple sensitivity analysis, and multi-analysis en-

semble forecasts. The ensemble forecasts initialized at 12 UTC on 10th December 2005

were the very interesting case. All NCEP members were not able to predict the loca-

tion of the blocking occurred on 15th December 2005 correctly, whereas almost all JMA

members were able to predict it correctly. In order to identify the cause of the collective

mis-prediction of the blocking, the multi-analysis ensemble forecast was performed using

the NCEP analyses with the original initial perturbations. Although the decreases of

the imperfection of the model formulation were recognized, it was found that the collec-

tive mis-prediction mainly resulted from the NCEP control analysis at 12 UTC on 10th

December 2005. Next, the ensemble-based sensitivity analysis was performed in order

to detect the sensitivity area against the blocking. As a result, the sensitivity area was

detected over the central north Pacific. It was found that this was related to a cut-off

cyclone. In the sensitivity area, the difference between the JMA and NCEP control anal-
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yses measured by the dry total energy norm was relatively larger than the other areas. In

other words, the sensitive area had large uncertainty. The NCEP ensemble, however, did

not have effective initial perturbations to predict the blocking formation more accurately.

Based on this fact, the multi-analysis ensemble forecasts were performed using the NCEP

analyses with globally and regionally amplified initial perturbations. The amplitude of

the NCEP initial perturbations was increased by a factor of 1.5 over the global area or

only over the sensitivity area. Although the global amplification of the initial perturbation

led to decrease of the RMSE over the blocking region, that also led to the degradation of

the forecast skill over the NH. On the other hand, the regional amplification of the initial

perturbation led to decrease of the RMSE over the blocking without the degradation of

the forecast skill over the NH. These results indicate that the sensitivity area was essen-

tial for the prediction of the blocking. Also, they indicate that the excessive amplification

of the initial perturbation over non-sensitivity area is undesirable and that the regional

amplification technique can lead to better forecast without the degradation of the forecast

over the other area. The result in this study shows that such a case dependent estimates

may really have value as compared to climatologically based rescaling that is used widely.
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