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Abstract

In this study, a limit of predictability for the atmosphere is estimated based on analog

weather maps in the historical data, and a new type of ensemble forecast assimilation

technique is developed in order to improve the forecast skill in the nonlinear dynamical

system. The limit of the predictability (denoted as P ) is de¯ned as the time taken for the

initial di®erence (E0) of the analog pair to reach the climate noise level which is de¯ned

by one standard deviation from the long term mean of the °uctuation in the observed

atmosphere. Although a total of 185,547,600 pairs of the weather maps are searched, there

are no good analog pairs to investigate the di®erence growth rate for a su±ciently small

E0 of the analog pairs. For this reason, the behavior of E0 is explained by a quadratic

error growth model. Regressing the quadratic error growth model to the scattergram

between P and E0, it is estimated that P would extend 2.88 days when E0 is reduced to

1=e for su±ciently small E0. The limit of predictability P varies depending on variable by

the atmospheric boundary condition such as El Ni~no, La Ni~na, Paci¯c/North American

(PNA), and North Atlantic Oscillation (NAO). In the case of PNA+ and NAO-, the

di®erences of the analog pairs grow slower than the average showing the e-folding time

of 3.17 and 3.07 days, respectively. Conversely, in the case of La Ni~na and PNA-, the

di®erences grow faster than the average showing the e-folding time of 2.72 and 2.69 days,

respectively. These results are also veri¯ed by hindcast datasets.
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ABSTRACT iv

The forecast assimilation is an analysis technique in which a true value contained in

each ensemble forecast is accumulated into a single assimilated forecast such as a data

assimilation. For the experiments, we used a Lorenz model, and a Kalman ¯lter is applied

for the forecast assimilation. The experiments are started by calculating 101 members of

the ensemble forecast in which the initial error with Gaussian distribution is superimposed

around the truth, and one of the members is arbitrarily selected as a control forecast. The

experiments of the forecast assimilation are repeated 5000 times for di®erent sectors of the

solution trajectory to obtain the statistical signi¯cance of the results. The distribution

of the ensemble members is stretched by a linear error growth at the beginning of the

forecast. After that, the nonlinear e®ect becomes dominant to distort the distribution.

The forecast assimilation is then started when the errors of the ensemble forecasts have

grown to a certain threshold. It is demonstrated that the forecast skill of the assimilated

forecast is always superior to the control forecast. In the range of the small root mean

square (RMS) error of the ensemble forecast, the skill of the assimilated forecast is inferior

to the ordinary ensemble mean. However, for the su±ciently large RMS error before the

saturation, it is shown that the skill of the assimilated forecast is superior to the ensemble

mean. The result suggests that the forecast assimilation is one of the viable approaches

to the medium or extended range forecast.

Key Words: 3D-Var, atmospheric predictability, boundary condition, forecast assimila-

tion, hindcast, Kalman ¯lter, initial condition, Lorenz model
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Chapter 1

Introduction

Recently, a numerical weather prediction system is indispensable to a weather forecast.

Since the numerical weather prediction system has been developing through the improved

representation of physical processes, the utilization of more accurate methods of data

assimilation, the increased availability of data (e.g., satellite, aircraft, etc.), and the in-

creased power of supercomputers, the predictability of the weather forecast is nowadays

increasing (Kalnay 2002). The predictability limit of the global forecast is about 8 days

(Kalnay 2002). While the forecasting skill has steadily increased, and the range of skillful

forecasts has been steadily extended, it has also been established that the determinis-

tic prediction of the instantaneous state of the weather is impossible for an extended

range. This limit of predictability was ¯rst pointed out by Lorenz (1963) who subse-

quently demonstrated that, due to the inherent nature of instability and nonlinearity, at-

mospheric °ows with only slightly di®erent initial states will depart from each other and

evolve eventually to °ows that are just randomly related. It is our contention that de-

terministic medium-range forecasting may be impossible beyond two weeks of the chaotic

barrier, even if we can have a perfect prediction model.

1



CHAPTER 1. INTRODUCTION 2

In this matter, there are two major issues for the weather forecasting: developing a

better numerical weather prediction system, and investigating the limit of the atmospheric

predictability. This study deals with these two subjects.

1.1 Atmospheric Predictability

Previous studies of the limit of the predictability for the atmosphere are divided into two

groups; one with empirical approach using analog pairs in the historical weather maps and

the other with dynamical approach using numerical model experiments (Lorenz 1969a).

The empirical approach estimates the limit of the predictability of the atmosphere based

on the growth rate of the di®erence between the two analog weather maps (e.g., Lorenz

1969b; Gutzler and Shukla 1984). Although Lorenz (1969b) can not ¯nd good analog

pairs, he presumed that the small di®erence of the good analog pairs would be double in

about 2.5 days. Similar to Lorenz's approach, Gutzler and Shukla (1984) estimates the

doubling time as nearly 8 days. It is di±cult, however, to estimate the predictability for

small error using this approach because it is highly improbable that the truly good analog

pair will be found in the historical data (van den Dool 1994).

On the other hand, the dynamical approach estimates the limit of the predictability

with \identical twin" experiments in which two integrations, started from slightly di®erent

initial conditions, diverge from each other, providing information about the limit of the

predictability (e.g., Lorenz 1982; Dalcher and Kalnay 1987; Schubert and Suarez 1989;

Chen 1989; Simons et al. 1995). Lorenz (1982) estimates a doubling time for small errors

of only 2.4 days, using a quadratic error growth model constructed from the growth of the

root mean square (RMS) error in 500 hPa geopotential height between two forecasts. With
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the same approach, the doubling time for the recent forecast model developed by European

Center for Medium-Range Weather Forecasts (ECMWF) appears to be around 1.5 days

(Simons et al. 1995). Dalcher and Kalnay (1987), however, points out that the doubling

time of small error is not a good measure of the error growth because the result is very

sensitive for small error to the quadratic error growth model. Therefore, they de¯ned the

limit of predictability as the time taken for the error to reach 95 % of the climatological

mean range of °uctuation in 500 hPa geopotential height, and found that the limit of

predictability is close to 20 days in winter. In a similar way as Dalcher and Kalnay (1987),

Chen (1989) adopted the limit of the predictability as the time taken for the error to reach

one standard deviation from the climatological mean range of °uctuation, and found the

limit of the predictability is about 14 days without using the Lorenz's error growth model.

However, in order to extrapolate his result to the small initial error, Chen (1989) assumes

a linear relationship between the initial error and the limit of predictability. Such a linear

relationship is used further by Toth (1991) in a study of predictability based on circulation

analogues. From those experiments, it is concluded that the limit of predictability is of

the order of two weeks. Nohara and Tanaka (2001) suggests that the limit of predictability

obeys a logarithmic function rather than a linear function of the initial error using the

historical weather maps and the barotropic model produced by Tanaka (1991; 1998). The

predictability for the barotropic atmosphere increases about 6.3 days when the initial

error is reduced to 1/10 (with the e-folding time of 2.8 days).

Meanwhile, the forecast skill of the seasonal mean is higher during El Ni~no winter than

normal winter (Chen and van den Dool 1997; Barsugli et al. 1999; Shukla et al. 2000).

The El Ni~no is de¯ned by that the warm sea surface temperature (SST) anomaly appears

over the eastern tropical Paci¯c and persists for a few month or more. Conversely, the La

Ni~na is de¯ned by that the cold SST anomaly appears over the eastern tropical Paci¯c

and persists for a few month or more. The strong external forcings, such as El Ni~no
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and La Ni~na, signi¯cantly impact the planetary scale circulation over the extratropics

(e.g., Lau and Nath 1994). The forcings derive some persistent circulation pattern such

as the Paci¯c-North American (PNA) pattern. The PNA is one of the most prominent

teleconnection patterns and located over the North Paci¯c and over North America. Ad-

ditionally, the North Atlantic Oscillation (NAO), which is associated with a north-south

dipole structure in the pressure ¯eld over the North Atlantic, is also considered as one

of the most prominent teleconnection patterns. Since the synoptic scale cyclone activity

over the extratropics directly attributes to the initial error growth for the operational fore-

casting, it is expected that the external forcings indirectly a®ect the initial error growth.

In previous studies using the numerical experiments, the initial errors during the positive

phase of PNA years have smaller growth rate than the negative phase of PNA (Lin and

Derome 1996; Sheng 2002).

The dynamical approaches are the primary method for the estimate of the atmospheric

predictability. However, the results using the dynamical approaches potentially depend

on the characteristics of the numerical model. Therefore, it is necessary to estimate the

atmospheric predictability interms of the empirical approach with the historical analog

pairs.

1.2 Development of Prediction System

In order to extend the predictable period, many operational weather forecasting centers

have been developing the numerical forecasting system (reviewed by Kalnay et al. 1998) in

the following three factors: (1) the improvement of the numerical models (high resolution

and nonhydrostatic model, improved physical processes), (2) the development of the data
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assimilation system, which result in improved initial conditions for the models, (3) devel-

opment of the ensemble forecast system in which several model forecasts are performed

by introducing perturbations in the initial conditions or in the models themselves. Figure

1.1 shows the historic evolution of the operational forecast skill by the National Centers

for Environmental Prediction (NCEP) forecast models over the North America. The S1

score (Teweles and Wobus 1954) measures the relative error in the horizontal gradient of

the height of the 500 hPa for the forecasts over the North America. The values S1=70%

and S1=20% are empirically determined to correspond respectively to a useless and a

perfect forecast when the score was designed. The forecast skill is gradually advanced by

the evolution of the numerical models and data assimilation. Figure 1.1 also shows that

the 72-h forecasts of today are as skillful as the 36-h forecasts 10-20 years ago.

For further improvement of the forecast skill, an ensemble of numerical forecasts from

slightly perturbed initial conditions is used for the medium range forecasts at many oper-

ational weather forecasting centers. Since the ensemble forecast is based on a probabilistic

weather prediction, it is necessary to create a probability density function as diversely as

possible for the ensemble members. Therefore, at ECMWF, the ensemble forecast system

is constructed by an initial perturbation that is a linear combinations of singular vectors

(Molteni et al. 1996; Buizza 1997; Gelaro et al. 1997; Buizza et al. 2000). The singular

vectors specify the directions of the greatest growth of the linearized system over a prede-

termined time interval. At the NCEP, a breeding method is introduced for the ensemble

forecast system in which the initial perturbation is a linear combination of bred vectors

(Toth and Kalney 1993, 1997). The bred vectors are perturbations created in directions

where past forecast errors have grown rapidly. Additionally, Houtekamer and Derome

(1995) introduced a perturbed observation method. This method adds random errors to

the observation and includes di®erent parameters in the physical parameterization of the

model in di®erent ensembles. Hamill et al. (2000) shows that the perturbed observation
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method performs better than the singular vector or breeding method. These ensemble

forecasts have contributed to the progress of the medium range forecast in the 1990's.

Recently, a multi-model ensemble system has become more popular (Harrison et al. 1999;

Krishnamurti et al. 1999; Doblas-Reyes et al. 2000; Palmer et al. 2000; Kenneth et

al. 2002; Alhamed and Lakshmivarahan 2002). The ensemble members are constructed

by many operational forecasts from di®erent operational centers that run competitive

state-of-the-art operational analysis and model forecasts. The ensemble average of the

multi-model ensemble is more skillful than the best individual forecasts (Fritsch et al.

2000).

The skill of the ensemble forecasts is improved by statistical analyses as an ensemble

mean and an ensemble spread (Murphy 1988). Krishnamurti et al. (1999) has shown

that if the multi-model ensemble includes correction of the systematic errors by regres-

sion (called superensemble), the seasonal forecast skill (Krishnamurti et al. 2000; Kharin

and Zwier 2002) and Atlantic hurricane forecast (Williford et al. 2003) is signi¯cantly im-

proved. Additionally, a cluster analysis of multi-model ensemble is suggested by Alhamed

and Lakshmivarahan (2002).

Using these ensemble forecasts, some statistical analyses like the ensemble mean per-

form well in the nonlinear system. Certainly, if the ensemble members distribute hyper

cubic or ellipsoid around the truth, the location of the ensemble mean indicates the truth

and it becomes the best forecast. Nevertheless, the actual distribution is folded by the

nonlinear e®ect as the forecast progresses. Then, the ensemble mean is detached from

the center of the distribution of the ensemble members, since the ensemble mean is only

the average of the ensemble members. If one statistical analysis includes not only the

temporal result of the ensemble members but also the time evolution with dynamical

process of the forecast error growth, it may be expected that the skill of the new analyzed
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forecast is better than the ordinary ensemble mean. For the statistical and dynamical

analysis, the ensemble members are accumulated into a single forecast by a Kalman ¯lter

(Kalman and Bucy 1961) as in the atmospheric and oceanic data assimilation. This is

called forecast assimilation (Nohara and Tanaka 2003). The Kalman ¯lter assimilates

the explicit description of the evolution of the forecast error, so it is competent for the

forecast assimilation.
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Figure 1.1: Historical evolution of the operational forecast skill of the NCEP models over
the North America (500 hPa). The S1 score measures the relative error in the horizontal
pressure gradient, averaged over the region on interest. The values S1=70% and S1=20%
were empirically determined to correspond respectively to a useless and a perfect forecast
when the score was designed. (From Kalnay 2002)
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1.3 Objectives

The purpose of this studies are to estimate the atmospheric predictability using empirical

approach and to construct a new technique of the forecast assimilation using the ensemble

members in order to improve the forecast skill. The atmospheric predictability is esti-

mated as follows. First, many good analog pairs are sought in the observed atmosphere

using historical dataset of NCEP/National Center for Atmospheric Research (NCAR) re-

analysis. The behavior of the di®erence for the good analog pairs is the key to estimate

the atmospheric predictability. Next, the roles of the boundary conditions, such as El

Ni~no, La Ni~na, and the basic °ow patterns, such as PNA, and NAO, for the atmospheric

predictability are investigated using the observed atmospheric data. Finally, the roles of

the boundary condition and the basic °ow patterns for the atmospheric predictability are

veri¯ed by the hindcast datasets.

In the next, the forecast assimilation is developed and veri¯ed as follows. In order to

examine the performance of the forecast assimilation technique, this study uses a simple

dynamical system of the Lorenz model (Lorenz, 1963), which has been comprehensively

studied for the chaotic behavior and the nonlinear dynamics (Sparrow 1982; Mukougawa

et al. 1991). For the forecast assimilation of the ensemble members, this study uses three

dimensional variational analysis (3D-Var) and the Kalman ¯lter formulated by Kalman

and Bucy (1961).

This paper is organized in chapters as follows. In Chapter 2, the method and results of

the estimate of the atmospheric predictability are presented by the previous observation

and hindcast datasets. In Chapter 3, the forecast assimilation is introduced and the

performance of the forecast assimilation is assessed for the Lorenz model. The results of
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the atmospheric predictability and the forecast assimilation are discussed in Chapter 4.

Finally, the conclusions are given in Chapter 5.



Chapter 2

Atmospheric Predictability

2.1 Experimental Design

2.1.1 Data

The dataset used in this study is NCEP/NCAR reanalysis. A detailed documentation

is described by Kalnay et al. (1996) and Kistler et al. (2001). The reanalysis data

assimilation system includes the NCEP global spectral model operational in 1995, with

28 sigma vertical levels and a triangular truncation of 62 waves, equivalent to about

210 km horizontal resolution. The analysis scheme is a three-dimensional variational

(3D-VAR) scheme cast in spectral space denoted by the spectral statistical interpolation

(Parrish and Derber 1992). The dataset for this study contains four times daily (00Z,

06Z, 12Z, 18Z) meteorological variables of geopotential height at 2.5± longitude by 2.5±

latitude grids on 500 hPa for 55 years from January 1948 though December 2002.

Also used is Optimum Interpolation Sea Surface Temperature (OI-SST) produced by

Reynolds and Smith (1994) from 1950 though 2002. The dataset contains December-

11
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January-February (DJF) mean of averaged SST over the Ni~no-3.4 region (5.0±N-5.0±S,

170±-120±W).

2.1.2 Seeking Analog Pair

First, seeking for the analog pair in the past observed atmosphere is necessary to estimate

the atmospheric predictability. The di®erence between the analogous two weather maps

is increasing as the time proceeds. Then if we can ¯nd the su±cient small di®erence

of the analog pair, the subsequent increasing di®erence with respect to time suggests the

inherent error growth rate in the atmosphere. Therefore, the key to the successful analysis

for discussing the error growth is to search for su±ciently good analog pairs.

In this study, the analog is de¯ned by a root mean square (RMS) di®erence between

the two weather maps. For each two maps Z(a) and Z(b), where Zi(a) and Zi(b) are 500

hPa geopotential height scaled by the cosine of latitude for grid points i = 1; 2; :::; N (N

the total number of gridpoints), the area-weighted RMS di®erence is given by

RMS =
µ 1
w

NX

i=1

³
Zi(b)¡ Zi(a)

´2
¶1=2

; (2.1)

where

w =
NX

i=1
cos µi: (2.2)

The RMS is calculated for 20 ±N to 90 ±N region. The RMS score has a minimum value

(RMS=0) for a perfect analogous pair. So, the best analog pair is the minimum RMS

among the all combinations of the weather maps.

Although the similar approach was attempted by Lorenz (1969b), Gutzler and Shukla

(1984), and Toth (1991), they failed to determine the limit of predictability since they
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could not ¯nd su±cient analog pairs for 500 hPa geopotential height to discuss the at-

mospheric predictability. From other method, van den Dool (1994) showed that it was

necessary to take a historical data library of the order 1030 years in order to ¯nd two

observed °ows that match within the current observation error over the Northern Hemi-

sphere. It is shown therefore that estimating the atmospheric predictability is di±cult

only using the analog pair. It is necessary to modify the theoretical error growth model

for estimating the atmospheric predictability, which is explained in next section.

2.1.3 Quadratic Error Growth Model

In order to estimate the atmospheric predictability, a quadratic error growth model is

suggested by Lorenz (1969a, 1982). The error growth model is written as

dE
dt

= ®E ¡ ®
E1

E2; (2.3)

where E is the RMS di®erence in 500 hPa geopotential height between two weather maps,

® is a di®erence growth rate in small E between the analog weather maps, and E1 is a

saturated di®erence value that is de¯ned as the climatological mean of the atmospheric

°uctuation. The equation allows an exponential growth of di®erence with a growth rate

given by ® for small di®erences for the ¯rst term in Eq. (2.3), and the error will saturate

for the second term at a su±ciently long time. In previous studies, the di®erence growth

was ¯tted on this equation to obtain ® (Lorenz 1969b; Lorenz 1982; Stroe and Royer 1993;

Savijarvi 1995) because it is convenient to understand the behavior of the small di®erence.

However, since the term dE=dt is very sensitive to compute due to the di®erential form,

it is di±cult to ¯t the relation between dE=dt and E for a small di®erence. Therefore this

study attempts to ¯t the di®erence growths of the analog pairs on the integrated form of

Eq. (2.3).
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The integral form of this equation is given by Stroe and Royer (1993) as

E =
E1

1 +
µE1
E0

¡ 1
¶
e¡®t

; (2.4)

where E0 is an initial RMS di®erence between two weather maps. The RMS di®erence

of the analog pair increases as time proceeds, and exceeds a climate noise level El which

is de¯ned by one standard deviation from the long term mean of the °uctuation in the

observed atmosphere. When RMS di®erence reaches the noise level, it may be no longer

considered as an analog pair. For the analogy in the weather prediction, it may be the

criterion that the predictability is lost. For this reason, the limit of the predictability P is

de¯ned as the time taken for the initial di®erence E0 to reach the climate noise level El.

Following Nohara and Tanaka (2001), Eq. (2.4) is rewritten for the limit of predictability

P using E0 as

P = ¡ 1
®

(
log

"
E0

E1 ¡ E0

#
+ log

"
E1 ¡ El

El

#)
: (2.5)

Using Eq. (2.5), the regression between P and E0 derives the error growth rate ®. If E0

is closed to 0, then the relation between P and E0 will be logarithmic, and 1=® indicates

an e-folding time of the di®erence growth. Nohara and Tanaka (2001) con¯rmed that

® can be estimated by using only large initial di®erence based on the numerical model

examinations.

2.1.4 Hindcast Experiments

A hindcast dataset (Hamill et al. 2003) is a retrospective forecast for every day from

November 1978 to the present using a frozen version of the operational Medium-Range

Forecast model at NCEP, which was an operational forecast model between January and

June of 1998. The hindcast is generated by 15 days forecast from 1978 to 2002 using
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0000 UTC initial conditions from NCEP/NCAR reanalysis (Kalnay et al. 1996). The

dataset for this study contains the daily 15 days hindcast with meteorological variables

of geopotential height at 2.5± longitude by 2.5± latitude grids on 500 hPa for 23 winters

(DJF) from December 1979 to February 2002.

The hindcast is compared with the NCEP/NCAR reanalysis as the verifying truth.

The hindcast skill is indicated by the RMS error, for example a 3 days hindcast from the

initial states at 0000 UTC 1 January 2000 is compared with 0000 UTC 4 January 2000 in

the NCEP/NCAR reanalysis dataset. Since the initial state of the hindcast is same as the

NCEP/NCAR reanalysis, the RMS error of the 0 days hindcast equals to 0 m. However,

the error of the hindcast increases over time due to the imperfect model for the forecast,

inevitable initial error included in the reanalysis, and the dynamical instability.
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2.2 Results

2.2.1 Atmospheric Predictability

In order to estimate the atmospheric predictability, it is necessary to ¯nd many good

analogous pairs of weather maps. The analog pairs are searched for the four times daily

NCEP/NCAR reanalysis during the months of December, January, February { a total of

19170 maps during the 54 years. First, RMS for all combinations of all weather maps are

calculated. Following Nohara and Tanaka (2001), every weather map for a single winters

is compared with all maps of other winters. This procedure is chosen to ensure that a

good analog pair is not merely due to persistence, but actually represents a recurrence

of a circulation pattern. The total number of combinations compared by this procedure,

185,457,600, is much larger than that in previous studies.

Figure 2.1 shows the frequency distribution of RMS di®erence resulted from all com-

binations of weather maps. The frequency peak is seen about 120 m RMS di®erence and

the average RMS di®erence for all combinations is 121.84 m. This value corresponds to

the expected value of the di®erence between two randomly chosen weather maps. The

standard deviation is 15.01 m, with a larger spread in the higher values. Only 16.1% of

the samples in all combinations are less than one standard deviation from the mean. This

result implies that it is extremely di±cult to ¯nd a very analogous pair comparable to

the current observation error (about 10 m of RMS).

Table 2.1 contains a sample list of the best ten independent analog pairs. Because

some °ow patterns persist one day or more, many of the best analog pairs are chosen from

the same synoptic situation with one or more days apart. Following Gutzler and Shukla
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(1984), the dependent analog pairs are subjectively removed by examining the list of the

best analog pairs. The dependent analog pairs are de¯ned as pairs by before and after 10

days from the most analogous date. The total number of the independent analog pair is

reduced to 21530. It is found that the best analog pair is about half of the average value

of the RMS di®erence. Figure 2.2 shows the mean geopotential height at 500 hPa for the

top 1000 of the independent analog pairs. Marked troughs are located at the east of Asia

and North America, and ridges are over the northeastern Paci¯c and Atlantic. Since the

map is similar to the atmospheric climatology of 500 hPa geopotential height during the

winter, it is indicated that the map is not averaged by the speci¯c weather pattern as a

blocking pattern.

Figure 2.3 shows the distribution of grown di®erence for the top 1000 of the indepen-

dent analog pairs for 3 days from the most analogous date. The shaded region indicates

that RMS di®erence of the analog pair easily grows in short time. The regions are located

at the northeastern Paci¯c and the north Atlantic to the Europe, where is well-known as

the storm tracks during winter (Hosikins and Hodges 2002).

The similarity of the best analog pair can be con¯rmed visually. Figure 2.4 illustrates

the maps of 500 hPa geopotential heights of the best analog pair for (a) 0600Z 28, January

1956, (b) 0600Z 13, February 1961, (c) the di®erence between (a) and (b) with negative

contours shaded. Their contour interval is 60 m. This pair is very similar over the Atlantic

to the Siberia, but not over the North Paci¯c to the Alaska. The ¯gure shows that the

di®erence in the geopotential height is at most 300 m over North Paci¯c.

The RMS di®erence of the best analog pair gradually increases as time proceeds.

Figure 2.5 shows the time variation of the RMS di®erence. The solid curve represents the

RMS di®erence for the best analog pair. The solid and dashed straight lines represent the
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climatological mean (121.8 m) and the one standard deviation of atmospheric °uctuation

from the mean (106.8 m), respectively. Hereafter, the range above the dashed line is

referred to a climatological noise range. The RMS di®erence linearly increases from the

0th to the 3rd day and reaches the climatological noise range at the 3rd day. After the

3rd day, the RMS becomes stable to the 12th day. When the RMS reaches the noise range

for the ¯rst time from the analogous date, it may be no longer considered as the analog

pair. For the analogy in weather prediction, it may be the criterion that the predictability

is lost. For this reason, the limit of predictability P is de¯ned as the time taken for the

RMS to reach the noise range. In this case, P for the best analog pair is about 3 days.

Similar to the above result, the limit of the predictability P for the all independent

analog pairs are calculated. Figure 2.6 shows a scatter diagram of P as a function of the

initial RMS di®erence E0. The distribution of P is widely spread regardless of E0. The

solid curve is the best ¯t of the regression using Eq. (2.5), and the regression yields:

P = ¡2:88 log
Ã

E0

E1 ¡ E0

!
+ 5:7: (2.6)

In spite of the spread distribution of P , a standard error of the coe±cient of the ¯rst term

is 0.03 because the total number of the independent analog pair is 21530. This equation

means that the limit of predictability P extends 2.88 days when the initial RMS di®erence

E0 reduced to 1=e for su±ciently small E0.
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Table 2.1: The list of the best ten independent analog pairs and their RMS di®erence.

Dates of the pair RMS (m)
1 06Z 28, Jan. 1956 - 06Z 13, Feb. 1961 59.23
2 12Z 4, Dec. 1964 - 18Z 12, Dec. 1974 59.40
3 18Z 31, Jan. 1955 - 18Z 12, Feb. 1974 59.80
4 00Z 7, Jan. 1964 - 12Z 2, Jan. 1989 60.53
5 00Z 19, Dec. 1952 - 06Z 7, Jan. 1961 60.87
6 00Z 26, Dec. 1956 - 00Z 18, Jan. 1991 61.29
7 06Z 25, Jan. 1957 - 18Z 3, Dec. 1972 61.75
8 00Z 23, Dec. 1952 - 18Z 7, Dec. 1974 61.97
9 18Z 25, Dec. 1950 - 12Z 24, Dec. 1976 62.32

10 18Z 6, Dec. 1949 - 00Z 19, Dec. 1974 62.48
average of RMS di®erence of all pairs = 121.8
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Figure 2.1: Frequency distribution of RMS di®erence resulted from all combinations of
weather maps.
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Figure 2.2: Map of the mean geopotential height at 500 hPa for the top 100 of the
independent analog pairs. The contour interval is 60 m.
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Figure 2.3: Map of the distribution of the grown di®erence for the top 1000 of the inde-
pendent analog pairs for 3 days from the most analogous date. The contour interval is 15
m, and the RMS di®erence above 60 m are shaded.



CHAPTER 2. ATMOSPHERIC PREDICTABILITY 23

Figure 2.4: Maps of the 500hPa geopotential height. Shown are the best analog pair for
(a) 0600Z 28, January 1956, (b) 0600Z 13, February 1961, (c) the di®erence between (a)
and (b) with negative contours shaded. The contour interval is 60 m.
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Figure 2.5: Time variation of the RMS di®erence. The solid curve represents the RMS
error for the best analog pair. The solid and dashed straight lines represent the clima-
tological mean (121.8 m) and the one standard deviation of °uctuation from the mean
(106.8 m), respectively.
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Figure 2.6: Scatter diagram of E0 against P . The solid curve is the best ¯t of the
regression using Eq. (2.5).
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2.2.2 Role of Boundary and basic °ow pattern for Atmospheric
Predictability

Generally, the seasonal forecast skill is higher during El Ni~no winter than normal winter

(Chen and van den Dool 1997; Barsugli et al. 1999; Shukla et al. 2000). In the El Ni~no

condition, the high SST region, which normally locates in the western tropical Paci¯c,

shifts to the central tropical Paci¯c. Then, the circulation pattern over the tropic is

changed by the strong external forcing due to the El Ni~no. Certainly, the strong external

forcings as El Ni~no and La Ni~na signi¯cantly impact upon the planetary scale circula-

tion over the extratropics (e.g., Lau and Nath 1994), and derive the major atmospheric

inherent mode, such as Paci¯c-North American (PNA) pattern. Additionally, the North

Atlantic Oscillation (NAO) is as inherent as the major atmospheric PNA pattern. Since

the synoptic scale cyclone activity over the extratropics directly attributes to the initial

error growth for the operational forecasting, it is expected that the external forcings and

particular atmospheric °ow pattern indirectly impact on the initial error growth. In this

section, this study will show the atmospheric predictability by the di®erence of the bound-

ary conditions, such as El Ni~no and La Ni~na, and the atmospheric °ow pattern such as

PNA and NAO.

Case of El Ni~no and La Ni~na

Similar to Section 2.2.1 of the atmospheric predictability, the analog pairs are searched

by the partitioned datasets into El Ni~no, La Ni~na, and neutral years based on an SST

index, de¯ned as DJF mean of averaged SST over the Ni~no-3.4 region (5.0±N-5.0±S, 170±-

120±W). The SST index is then ranked, and the winters (DJF) with highest 15, lowest 15,

middle 15 ranks are classi¯ed as El Ni~no, La Ni~na, and neutral years, respectively. Table
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2.2 shows the Northern Hemisphere winters classi¯ed as El Ni~no, La Ni~na, and neutral

years.

First, the RMS di®erence for all combinations of all weather maps are calculated in

each classi¯ed years. Figure 2.7 shows normalized frequency distributions of the RMS

di®erence during El Ni~no year, La Ni~na year, neutral year, and the average that is all

combination for 53 winters irrespective of El Ni~no or La Ni~na. The frequency distributions

in El Ni~no year is shifted to smaller RMS di®erence than the other distributions. It is

indicated that the atmospheric variability in El Ni~no year is smaller than the other years.

Next, the limit of the predictability P for the all independent analog pairs are calcu-

lated to estimate the atmospheric predictability in each classi¯ed year. The climatological

noise range adopts the 106.8 m RMS di®erence that is same as Section 2.2.1. The scatter-

diagram for the initial di®erence E0 and P is ¯tted by the quadratic error growth model

of Eq. (2.5). Then, the coe±cient of the ¯rst term in Eq. (2.5) indicates the di®erence

growth rate of the analog pair. Figure 2.8 shows the di®erence growth rates (e-folding

time) for averages for El Ni~no year, La Ni~na year, and neutral year. The horizontal bars

indicate the standard error for each condition. The e-folding time in the case of El Ni~no

year is 2.84 days that is equivalent to the all combination case. The cases of La Ni~na

and neutral year indicate faster di®erence growing speed than the average case, and their

e-folding times are 2.72 and 2.77 days, respectively.

Case of PNA Pattern

Similar to Section 2.2.1 of the atmospheric predictability, the analog pairs are searched by

the partitioned datasets into positive PNA (PNA+), negative PNA (PNA-), and neutral
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years based on an PNA index, de¯ned by Wallace and Gutzler (1981) as:

PNA =
1
4
[Z(20±N; 160±W )¡ Z(45±N; 165±W ) + Z(55±N; 115±W )¡ Z(30±N; 85±W )];

(2.7)

where Z are standardized 500 hPa geopotential height values. The PNA index is then

ranked, and winters (DJF) with highest 15, lowest 15, middle 15 ranks are classi¯ed as

PNA+, PNA-, and neutral years, respectively. Table 2.3 shows Northern Hemisphere

winters classi¯ed as PNA+, PNA-, and neutral years.

Similar to El Ni~no and La Ni~na cases, the RMS for all combinations of all weather

maps are calculated in each classi¯ed year. Figure 2.9 shows the normalized frequency

distributions of the RMS di®erence during PNA+ year, PNA- year, neutral year, and the

average. The frequency distributions in PNA+ year is apparently shifted to smaller RMS

di®erence than the other distributions, while PNA- case is slightly shifted to the large

RMS di®erence than the other distributions.

Next, the limit of the predictability P for the all independent analog pairs are calcu-

lated to estimate the atmospheric predictability in each classi¯ed year. Figure 2.10 shows

the di®erence growth rate (e-folding time) for the average, PNA+ year, PNA- year, and

neutral year. The horizontal bars indicate the standard error for each condition. The

e-folding time in the case of PNA+, PNA-, and neutral year are 3.17, 2.69, and 2.84 day,

respectively. The di®erence growth rate is clearly separated by the each condition, and

PNA+ year indicates the slowest di®erence growing speed, while PNA- year is the fastest.

The neutral year is equivalent to the average case.
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Case of NAO Pattern

Similar to Section 2.2.1 of the atmospheric predictability, the analog pairs are searched by

the partitioned datasets into NAO+, NAO-, and neutral years based on an NAO index,

de¯ned as the di®erence of normalized sea level pressures (SLP) between Ponta Delgada

in Azores islands (37.8±N, 25.7±W) and Stykkisholmur/Reykjavik (65.1±N, 22.7±W) in

Iceland by Hurrel (1995). The NAO index is then ranked, and winters with highest 15,

lowest 15, middle 15 ranks are classi¯ed as positive NAO (NAO+), negative NAO (NAO-

), and neutral years, respectively. Table 2.4 shows the Northern Hemisphere winters

classi¯ed as NAO+, NAO-, and neutral years.

Similar to El Ni~no and La Ni~na cases, the RMS for all combinations of all weather

maps are calculated in each classi¯ed year. Figure 2.11 shows normalized frequency

distributions of the RMS di®erence during NAO+ year, NAO- year, neutral year, and

the average. The frequency distributions during NAO+ year is slightly shifted to smaller

RMS di®erence than the other distributions, while NAO- case is shifted to large RMS

di®erence than the other distributions.

Next, the limit of the predictability P for the all independent analog pairs are cal-

culated to estimate the atmospheric predictability in each classi¯ed years. Figure 2.12

shows the di®erence growth rate (e-folding time) for all combinations of NAO+ year,

NAO- year, and neutral year. The horizontal bars indicate the standard error for each

condition. The e-folding time in the case of NAO+, NAO-, and neutral year are 3.07,

2.99, and 2.87 day, respectively. The cases of NAO+ and NAO- indicate slower di®erence

growing speed than the average case. The neutral year is equivalent to the average case.
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Comparison of Di®erence Growth Rates

Table 2.5 lists the di®erence growth rates (e-folding time) for the various boundary con-

ditions. With the consideration of the standard error, it is found that the atmospheric

feature during PNA+ and NAO+ year apparently have slower di®erence growth than the

average case. On the contrary, the atmospheric feature during La Ni~na and PNA- have

faster di®erence growth than the average case.
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Table 2.2: The list of the Northern Hemisphere winters (DJF) classi¯ed as El Ni~no, La
Ni~na, and neutral years. The year in the table refers to January of the event listed.

SST anomalies over Ni~no 3.4 region
El Ni~no Neutral La Ni~na

1983 2.68 1991 0.39 1989 -1.83
1998 2.51 1954 0.26 1974 -1.77
1992 1.91 1993 0.24 2000 -1.65
1973 1.72 1953 0.14 1971 -1.59
1958 1.69 1982 0.11 1976 -1.53
1966 1.38 1994 0.09 1999 -1.53
1987 1.32 1990 0.07 1985 -1.19
1995 1.07 1979 0.02 1956 -1.04
1969 1.03 2002 -0.02 1955 -0.92
1964 0.82 1957 -0.15 1996 -0.84
1988 0.82 1960 -0.15 2001 -0.74
1970 0.81 1981 -0.17 1984 -0.69
1977 0.64 1961 -0.18 1965 -0.69
1978 0.59 1962 -0.29 1951 -0.68
1959 0.57 1967 -0.31 1968 -0.64
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Table 2.3: The list of the Northern Hemisphere winters classi¯ed as PNA+, PNA-, and
neutral years. The 15 years with the highest PNA indexes are selected as PNA positive
(PNA+). Similarly, The 15 years with the lowest PNA indexes are selected as PNA
negative (PNA-). The neutral year indicates the 15 years with the nearest climatology.

PNA Index
Positive Neutral Negative

1998 1.95 1984 0.48 1972 -2.27
1977 1.72 1996 0.44 1950 -1.86
1983 1.68 1973 0.23 1949 -1.66
1958 1.43 2000 0.11 1957 -1.25
1981 1.43 2002 0.07 1965 -1.24
1970 1.41 1954 0.01 1969 -1.15
1986 1.28 1967 -0.04 1971 -1.08
1978 1.24 1994 -0.05 1956 -1.06
1964 1.20 1951 -0.12 1979 -1.05
1987 1.13 1997 -0.12 1989 -1.00
1961 1.12 1959 -0.25 1982 -0.81
1995 1.09 1999 -0.26 1952 -0.80
1953 0.98 1968 -0.33 1985 -0.68
1963 0.87 1991 -0.43 1976 -0.65
2001 0.71 1955 -0.49 1974 -0.64
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Table 2.4: Same as Table 2.3, but for NAO index.

NAO Index
Positive Neutral Negative

1989 2.59 1950 0.37 1969 -2.43
1993 1.99 1954 0.33 1979 -2.04
2000 1.93 1997 0.25 1966 -2.01
1992 1.83 1994 0.21 1977 -1.74
1983 1.50 1962 0.10 1960 -1.69
1949 1.46 1972 0.02 1963 -1.61
1995 1.41 1967 0.01 1996 -1.35
1990 1.39 1980 -0.12 1956 -1.28
1976 1.30 1959 -0.13 1970 -1.13
1973 1.25 1998 -0.17 1978 -1.10
1975 1.14 1988 -0.22 1955 -0.98
1999 1.14 1953 -0.23 1985 -0.97
1984 1.10 2003 -0.27 1986 -0.96
1981 1.07 1971 -0.43 1982 -0.83
1991 1.05 1987 -0.44 2001 -0.66
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Table 2.5: List of the di®erence growth rates (e-folding time) for the various boundary
conditions and atmospheric °ow patterns.

e-folding time standard error

(day)
Average 2.88 0.03

Tropical SST
El Ni~no
La Ni~na
Neutral

2.84
2.72
2.77

0.08
0.09
0.09

PNA
Positive
Negative
Neutral

3.17
2.69
2.84

0.10
0.07
0.09

NAO
Positive
Negative
Neutral

3.07
2.99
2.87

0.09
0.09
0.09
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Figure 2.7: Normalized frequency distribution of the RMS di®erence during El Ni~no year
(dotted line), La Ni~na year (broken line), neutral year (chain dashed line), and average
(solid line).
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Figure 2.8: Di®erence growth rate (e-folding time) for average, El Ni~no year, La Ni~na year,
and neutral year. The horizontal bars indicate the standard error for each condition.
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Figure 2.9: Same as Fig. 2.7, but for PNA pattern.
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Figure 2.10: Same as Fig. 2.8, but for PNA.
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Figure 2.11: Same as Fig. 2.7, but for NAO.
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Figure 2.12: Same as Fig. 2.8, but for NAO.
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2.2.3 Hindcast Experiments

In this section, the role of the boundary and basic °ow pattern for the atmospheric

predictability is veri¯ed by the hindcast dataset. The hindcast dataset contains the daily

15 days forecasts on 500 hPa for 23 winters from December 1979 to February 2002. Figure

2.13 shows scatter diagram of the DJF mean of the RMS error on 7 days hindcast and

the SST, PNA, and NAO indices. The correlation coe±cients associated with the SST,

PNA, and NAO are -0.16, -0.50, and -0.30, respectively. The 95% signi¯cant level for

the correlation is -0.41. The clear inverse correlation is shown in the cast of the PNA

years. It is indicated that the PNA+ years tend to derive better forecast skill than PNA-

years. On the other hand, the inverse correlations associated with the SST and the NAO

indices are indistinctly shown in Fig. 2.13. These results are similar to the estimated

predictability by the analog pairs.

Figure 2.14 shows the time series of the correlations between the RMS error of the

hindcast and the SST, PNA, and NAO indices. The thin straight lines indicate 95%

signi¯cant levels for the correlations. Until the 3-days hindcast, the RMS error for all

hindcasts are independent of SST, PNA, and NAO indices. After the 3-days hindcast,

the RMS error for the hindcast indicates clear inverse correlation with the PNA index in

particular. The relation between the RMS error and the PNA index is reinforced as time

proceeds.

Figure 2.15 illustrates the distribution of the mean RMS error for 7 days hindcast at

500 hPa geopotential height during the El Ni~no and the La Ni~na years. Then, the El Ni~no

and the La Ni~na years are de¯ned as the highest 7 years and the lowest 7 years of the

SST index for 23 winters from December 1979 to February 2002. Although the hindcast

errors over the high latitude (over 120 m) are larger than the low latitude (under 40 m)
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during the both of the El Ni~no and the La Ni~na years, the anomalies of the hindcast

errors during the El Ni~no years indicate that there are regions of the small error growth

over the north Paci¯c to the north America (-15 m). During the La Ni~na years, there are

regions of the large error growth over the north America (5 m). Therefore, the di®erence

between the El Ni~no and the La Ni~na years are shown over the north Paci¯c to the north

America.

Figure 2.16 illustrates the distribution of the mean RMS error for the 7-days hindcast

at 500 hPa geopotential height in the case of the PNA+ and the PNA- years. Te PNA+

and the PNA- years are de¯ned as the highest 7 years and the lowest 7 years of the PNA

index. Similarly to the El Ni~no and the La Ni~na years, the anomalies of the hindcast

errors during the PNA+ years indicate that there are regions of the small error growth

over the north Paci¯c to the north America (-10 m). During the PNA- years, there are

regions of the large error growth over the Arctic to the north America (15 m). Therefore,

the di®erence between the PNA+ and the PNA- years are clearly shown over the north

Paci¯c to the north America.

Figure 2.17 illustrates the distribution of the mean RMS error for the 7-days hindcast

at 500 hPa geopotential height in the case of the NAO+ and NAO-. The NAO+ and

the NAO- are de¯ned as the highest 7 years and the lowest 7 years of the NAO index.

Dissimilarly to the El Ni~no and the PNA years, the anomaly of the hindcast errors indicate

that during NAO+ years there are regions of the small error growth over the rim of the

Arctic (-10 m) and large error growth over the Europe (10 m). During NAO- years, there

are regions of small error growth over the Europe and large error growth over the Arctic

(10 m). Therefore, the di®erence between the NAO+ and the NAO- years are clearly

shown over the Europe and the Arctic.
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Finally, the RMS error growth of the hindcast is compared with the growth of the

theoretical RMS di®erence by the quadratic error growth model in the real atmosphere.

The growth of the theoretical RMS di®erence is calculated by Eq. (2.4) with the di®erence

growth rate in the real atmosphere, ¡1=® = 2:88 days, and the initial di®erence, E0 =

7 (m), which indicates the average analysis error by the recent operational prediction

centers. Figure 2.18 shows time series of mean growth of RMS error for the 23 years

sample of the hindcast and the theoretical RMS di®erence by quadratic error growth

model in the real atmosphere. The error of the hindcast rapidly grows by contrast to

the theoretical RMS di®erence in a short forecast time, because the numerical prediction

system is imperfect to predict the real atmosphere. From this result, we can expect that

the modi¯cation of the numerical prediction system may derive the improvement of the

forecast skill. As one of the modi¯cations, a forecast assimilation technique is proposed

in next Chapter.
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Figure 2.13: Scatter diagram of the winter (DJF) mean of the RMS error on 7-days
hindcast against a) SST anomaly over Ni~no region, b) PNA index, and c) NAO index.
The solid lines are the best ¯t of the linear regression.
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Figure 2.14: Time series of the correlation between the RMS error and each indexes for
the Ni~no 3.4 SST anomaly (dashed line), the PNA index (solid line), and the NAO index
(dotted line). The thin straight lines indicate 95% signi¯cant levels for the correlations.
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Figure 2.15: Distribution of the mean RMS error for the 7-days hindcast at 500 hPa
geopotential height in the case of a) El Ni~no years and b) La Ni~na years. The contour
interval is 10 m. The colored regions shows anomaly of the RMS error growth. c) shows
the di®erence a) - b).
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Figure 2.16: Same as Fig. 2.15, but for the PNA cases.
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Figure 2.17: Same as Fig. 2.15, but for the NAO cases.
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Figure 2.18: Time series of the mean growth of the RMS error for the 23 years sample of
the hindcast (solid line) and the theoretical RMS di®erence by the quadratic error growth
model for the real atmosphere (dotted line).



Chapter 3

Forecast Assimilation

3.1 Experimental design

In this section, we describe the experimental design of the forecast assimilation in detail.

The forecast assimilation is a new technique for improving the weather forecast skill in

the ensemble forecast system. In this study, the Lorenz model (Lorenz 1963) is used

to examine the e®ect of the forecast assimilation. For the forecast assimilation, we use

3D-Var and the Kalman ¯lter in this study.

3.1.1 Forecast Assimilation

In the ordinary ensemble forecast, the forecast error of the ensemble mean is generally

smaller than the control forecast. Consider one ideal ensemble forecast where the initial

states of the ensemble members are normally distributed around the truth. The ensemble

mean is the best estimation of the truth because the mean coincides with the truth. The

50
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distribution of the ensemble members would be stretched by an exponential error growth

at the beginning of the forecast. Since the distribution is hyper cubic or elliptic, the

ensemble mean is still the best forecast by the same reason. After that, the nonlinear

e®ect becomes dominant in the nonlinear system. When the distribution is folded by the

nonlinear e®ect, the ensemble mean is detached from the center of the distribution of the

ensemble members. To avoid such the detachment, we introduce the forecast assimilation

in which the true value contained in the ensemble members is accumulated into a single

forecast using a data assimilation technique. Generally, the initial errors are superimposed

on the control run, since the truth is unknown for the ensemble members. Nevertheless,

comparing the forecast skill under the known truth may be the ¯rst step to show the

usefulness of the assimilated forecast.

Figure 3.1 illustrates a schematic °owchart of the forecast assimilation technique. The

bold arrows and boxes denote the stream of the forecast assimilation. First, a control

forecast (denoted as CF) and some ensemble members are calculated from an initial

state at t0. Since we cannot know the true (denoted as Tr) initial state, the initial

state of the control and ensemble members contain unavoidable error around the true

state. As the time integration proceeds, the forecast error would develop against the

initial error in spite of the perfect model setting. At ti some time after the beginning,

we start the forecast assimilation. Here, the ensemble members at ti are regarded as

of the observations corresponding to the ordinary data assimilation. We will refer to

it as predicted observations. Then the predicted observations are assimilated into the

background of the control forecast CF using the 3D-VAR and the Kalman ¯lter, and

analyzed value is obtained by the forecast assimilation. At the next time step ti+1, the

next predicted observation is assimilated into the analyzed background. The forecast

assimilation is calculated every time step after the time ti. This new type of the forecast

is de¯ned as an assimilated forecast (denoted as AF). Furthermore, the ensemble mean
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(denoted as EM) at ti can be utilized for the initial value of the next time integration for

another forecast. The forecast is called a forecast from ensemble mean (denoted as FEM).

In this experiment, we compare the forecast skill among control forecast CF, ensemble

mean EM, forecast from the ensemble mean FEM, and the assimilated forecast AF at

any time tn. The forecast skill is de¯ned by a root mean square (RMS) error between the

truth (denoted as Tr) and the forecast. The RMS error is de¯ned as,

RMS =
µ 1
N

NX

i=1

³
F (i)¡ T (i)

´2
¶1=2

; (3.1)

where T (i) is the Tr and F (i) is the forecast. Among these forecasts, the most superior

forecast has the minimum RMS error.
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Figure 3.1: Schematic °owchart of the forecast assimilation. The bold arrows and boxes
denote the stream of the forecast assimilation.
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3.1.2 Lorenz model

In order to understand the features of the forecast assimilation, we consider the Lorenz

model (Lorenz 1963), which has been studied by the comprehension of chaotic behavior

and a nonlinear system (Sparrow 1982; Mukougawa et al. 1991). The Lorenz model

consists of three di®erential equations,

dx
dt

= ¡¾(x¡ y);

dy
dt

= xz + °x¡ y;

dz
dt

= xy ¡ ¯z; (3.2)

where ¾, °, and ¯ are the model parameters. These equations were derived as a simpli¯-

cation of Saltzman's (1962) nonperiodic model for convection. The particular parameter

values, ¾ = 10, ° = 28, ¯ = 8=3, result in chaotic solution with unstable stationary solu-

tions of (
q
¯(1 + °);

q
¯(1 + °); 1 + °), (¡

q
¯(1 + °);¡

q
¯(1 + °); 1 + °), and (0; 0; 0).

Figure 3.2 illustrates trajectory of the Lorenz model in three dimensional perspective.

The locations of three unstable stationary points are indicated by dots. The trajectory is

not periodic, and two trajectories from the di®erent initial states have never superimposed

on each other. This complicated structures is known as a strange attractor. Therefore,

since the chaotic behavior of the Lorenz model is more easily understood than the gen-

eral circulation model, it has been used in many previous studies of ensemble prediction

(Palmer 1993; Anderson 1997; Trevisan and Pancotti 1998), atmospheric predictability

(Chu 1998) and data assimilation (Miller et al. 1994; Evensen 1997; Evensen and Fario

1997; Anderson and Anderson 1999).
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Figure 3.2: Trajectory of the Lorenz model in three dimensional perspective. The loca-
tions of three unstable stationary points are indicated by dots.
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3.1.3 3D-Var

In the numerical weather prediction system, the data assimilation consists of estimat-

ing the initial conditions for the forecast using all available observations. During the

1980's and early 1990's, many operational weather forecasting centers utilize an optimal

interpolation (OI) analysis for the routine data assimilation cycle (Lorenc 1981; Shaw et

al. 1987). In the OI analysis, the observations are linearly interpolated into the fore-

casting result from a prior analysis (called background) with the observation error and

background error for the weighting. However, several inherent weaknesses exist in the

method. For instance, the OI analysis extracts information poorly from observations

which are nonlinearly related to the model variables (Andersson et al. 1991).

A variational approach (Courtier 1997) circumvents some of the practical OI weak-

nesses, since it allows the analysis to use all the observations at every model grid point.

After the late 1990's, many operational centers are using three dimensional variational

data assimilation system called 3D-Var for the weather forecasting (Andersson et al. 1998;

Courtier et al. 1998; Rabier et al 1998). The 3D-Var seeks an optimal balance between

the observations scattered in the space and the background. Additionally, the 3D-Var

allows the satellites data to interpolate to the analysis.

Recently, a four dimensional variational data assimilation system called 4D-Var is

developed for the data assimilation. The 4D-Var seeks the optimal balance between the

observations scattered in the time as well as in the space (Klinker et al. 2000; Mahfouf

and Rabier 2000; Rabier et al. 2000). Although the quality of the analysis data produced

by the 4D-Var is superior to the 3D-var, the analysis value by the 4D-Var equals the

analysis value by the Kalman ¯lter under the perfect model condition. The Kalman ¯lter

is explained in next Section 3.1.4 in detail. Therefore, the 3D-Var is adopted for the
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forecast assimilation on behalf of the variational method.

A detail description of the 3D-Var is provided by Daley (1997) and Kalnay (2002), so

only a brief description is presented in the following. The solution of the analysis is the

model variables which most closely ¯ts both the observations and forecast from a prior

estimation, as measured by the following cost function J,

J(x) =
1
2

n
(x¡ xf )TP¡1

f (x¡ xf ) + (xo ¡H(x))TR¡1(xo ¡H(x))
o
; (3.3)

where x is the resultant analysis vector, xf is the background vector, Pf is the forecast

error covariance matrix, xo is the observation vector, H is observation operator that

transfers from the dimension of the model state to the dimension of the observation state,

R is the observation error covariance matrix, and the superscript T is the transpose of

the matrix. The forecast error covariance matrix Pf is de¯ned by a di®erence between

xf and true state xt by

Pf = (xf ¡ xt)(xf ¡ xt)T ; (3.4)

where the overbar denotes an expectation value. Similarly the observation error covariance

matrix R is de¯ned by a di®erence between xo and true state xt by

R = (xo ¡H(xt))(xo ¡H(xt))T : (3.5)

The cost function J is a quadratic function of the analysis increments x. The gradient

of J with respect to x is

rJ(x) = P¡1
f (x¡ xf ) + HTR¡1H(x¡ xf ) + HTR¡1(xo ¡H(xf)); (3.6)

where H is the linearized H around the background value as

xo ¡H(x) = H[xf + (x¡ xf )] (3.7)

= fxo ¡H(xf )g ¡H(x¡ xf): (3.8)
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When rJ(x) = 0, then J(x) is a minimum and x is the analysis xa.

For the forecast assimilation, the observations are the results of the ensemble forecast.

Then the observations are the same variables in the model, so H is equal to an identity

matrix I. Therefore, Eq. (3.3) is rewritten as

J(x) =
1
2

n
(x¡ xf )TP¡1

f (x¡ xf ) + (xo ¡ x)TR¡1(xo ¡ x)
o

(3.9)

The analysis xa is obtained by the minimization of the cost function J(x). The solution

is obtained through minimization algorithms for J(x) using iterative methods for mini-

mization search as the conjugate gradient or quasi-Newton methods. The minimization

technique is not shown here, so the detail description is referred to Press et al. (1992).

3.1.4 Kalman Filter

In order to examine the features of the forecast assimilation, we use Kalman ¯lter with

which many laboratories conduct experiments of the data assimilation for the weather

forecasting (Bouttier and Courtier 1999; Anderson 2001; Hamill et al. 2001). On the

other hand, the Kalman ¯lter includes an explicit description of the evolution of the

forecast error covariance in a data assimilation cycle, so the Kalman ¯lter is superior to

the variational analysis for the data assimilation. Therefore, we expect high performance

of the forecast assimilation using the Kalman ¯lter. Especially, the Kalman ¯lter in the

nonlinear system is called the extended Kalman ¯lter, which we utilize for the forecast

assimilation experiments in this study.

A detailed description of the extended Kalman ¯lter is provided by Daley (1991)

or Bouttier and Courtier (1999), so only a brief description is presented here. For the
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extended Kalman ¯lter, a nonlinear forecast model is required. Then a vector of a forecast

xf at time i + 1 is predicted using the nonlinear forecast model M and a vector of an

analysis xa at time i:

xf (i+ 1) = M(xa(i)): (3.10)

At the same time, we have some vectors which correspond to the observations xo that

have the same dimension as xf and xa. In the forecast assimilation, xo are calculated as

the ensemble forecast by the same forecast model M rather than the true observation.

Next, new analysis xa is then obtained using the forecast xf and the observation xo by

means of the following equation:

xa(i) = xf (i) + K(i)[xo(i)¡H(i)xf (i)]; (3.11)

where i is observation time, H is an observation operator, and K is the Kalman gain

matrix given by

K(i) = Pf (i)HT (i)[H(i)Pf (i)HT (i) + R(i)]¡1: (3.12)

Here, Pf is a forecast error covariance matrix, R is an observation error covariance matrix,

and H is a tangent linear matrix of the observational operator H in the vicinity of xf . In

this experiment, the observations are the same variables in the model, so H and H are

equal to an identity matrix I. Therefore, Eq. (3.11) and Eq. (3.12) are rewritten as

xa(i) = xf (i) + K(i)[xo(i)¡ xf (i)]; (3.13)

K(i) = P(i)f [P(i)f + R(i)]¡1: (3.14)

The observation error covariance matrix R may be de¯ned by a di®erence between xo and

true state xt by

R = (xo ¡ xt)(xo ¡ xt)T ; (3.15)

where the overbar denotes an expectation value. The Pf is predicted for the next time

step using the model, and given by the next two equations,

Pa(i) = [I¡K(i)]Pf (i); (3.16)
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Pf(i+ 1) = M(i)Pa(i)MT (i) + Q(i); (3.17)

where Pa is an analysis error covariance matrix, and Eq. (3.17) indicates the forecast of

Pf using the tangent linear model matrix M of the nonlinear forecast model M with a

model error covariance matrix Q.

Eqs. (3.10) and (3.17) are the prediction portion of the extended Kalman ¯lter, and

Eqs. (3.13), (3.14) and (3.16) are the analysis portion. Figure 3.3 indicates an organization

of computations for the extended Kalman ¯lter. First, the forecast xf is integrated by

Eq. (3.10) from the previous analysis xa. And the forecast error covariance matrix Pf is

integrated by Eq. (3.17) using Pa, M, and Q. Next, the Kalman gain K is derived by Eq.

(3.14). Then the observation xo is assimilated into the forecast xf by Eq. (3.13) to obtain

the analysis xa. And Pa is derived by Eq. (3.16). For the next step of the assimilation, xf

and Pf are integrated by Eqs (3.10) and (3.17) using xa and Pa. Therefore, the extended

Kalman ¯lter is routinely calculated.

For the forecast assimilation, if the forecast error covariance matrix Pf (ti), the obser-

vation error covariance matrix R(ti), the model error covariance matrix Q(ti), and the

observation xo(ti) are determined at ¯rst step of the forecast assimilation in Fig. 3.1,

the analysis xa can be routinely calculated for every time step of the forecast model.

Now, xo(ti) is randomly chosen among the ensemble members. Pf(ti) is assumed as

Pf(ti) = R(ti), because the distance between the control forecast and the truth equals

the average distance between each ensemble member and the truth. Furthermore, we as-

sume a perfect model for M , so Q = 0. Unfortunately, it is impossible to obtain R(ti) in

Eq. (3.15) because the future of the true value is unknown for us. Therefore, we consider

that R(ti) is obtained from an ensemble Kalman ¯lter technique (Evensen 1994; Burgers

et al. 1998), which uses an ensemble forecast to estimate R(ti). In the ensemble Kalman

¯lter, the ensemble covariance matrix Re(i) is used with the ensemble mean xe for the
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substitute of xt

R(i) ' Re(i) = (xo(i)¡ xe(i))(xo(i)¡ xe(i))T : (3.18)

In the data assimilation, since we cannot know the truth, R is calculated by previous xo

and the analysis value instead of xt. Similarly, since xe is a better estimation of the truth

than the control forecast or ensemble members in the future state, the Re(i) is considered

as the R(i). Therefore, the assimilated forecast is continuously calculated by the forecast

assimilation system using the ensemble members.

The extended Kalman ¯lter is superior to the variation method. Even if a system starts

with poor initial guess of the state of the atmosphere, the Kalman ¯lter may go through

an initial transient, after which it should provide the best linear unbiased estimate of the

state of the atmosphere and its error covariance (Kalnay 2002). However if the system

is very unstable, and the observations are not frequent enough, it is possible for the

linearization to become inaccurate, and the extended Kalman ¯lter may drift away from

the true solution (Miller et al. 1994).

Here, we check the quality of the extended Kalman ¯lter using the Lorenz model. The

truth is calculated from initial value (x; y; z) = (1:508870; ¡1:531271; 25:46091). The

observations are sequentially constructed from the truth adding Gaussian distribution

noise with variance equals to 4.0 every 0.01 time step. First, the initial state of analysis

is guessed, which is (¡20:0; ¡1:5; 25:4). Figure 3.4 shows the results of the Kalman ¯lter

for the Lorenz model from t = 0 to t = 1:0 (denoted as 0.0T to 1.0T). At the beginning

of the data assimilation (0.0T), the analysis has large error that exceeds 10.0 root mean

square (RMS) error. After the 5 step of the data assimilation (0.05T), the trajectory of

the analysis is close to the truth, and the RMS error of analysis is reduced under 1.0.

After that, the analysis becomes su±ciently closer to the truth than the observations.

Figure 3.5 shows same as Fig. 3.4, but the time is extended to 10.0T. At times of 1.2T,
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3.7T, 6.5T, 7.3T, the RMS error of analysis become °uctuative because of the unstable

stage of the Lorenz model. The °uctuative RMS error coincides with the large norm of

the Kalman gain in Fig. 3.6. When the norm of the Kalman gain is large, the status of

the trajectory is unstable, and the mixing ratio of the observation into the background is

increasing. Nevertheless, the analysis produced by the Kalman ¯lter does not drift away

from the truth. Since the assimilated time step is 0.001 for the forecast assimilation, the

Kalman ¯lter performs desirably.
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Figure 3.3: A organization of computations in an extended Kalman ¯lter.
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Figure 3.4: Results of the data assimilation using the Kalman ¯lter for the Lorenz model
from 0.0T to 1.0T. (a) time variation of value of x variable. The truth is given by the
solid line, the analysis is given by dotted line, and the observations are given by circle.
(b) y variable. (c) z variable. (d) RMS error for the analysis and the observations.

(a)

(b)

(c)

(d)
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Figure 3.5: Same as Fig. 3.4, but from 0.0T to 10.0T.

(a)

(b)

(c)

(d)
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Figure 3.6: Norm of Kalman gain matrix. The range of time is same as Fig. 3.5
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3.2 Results

3.2.1 Forecast Assimilation using 3D-Var

First, a control forecast xf and nmembers of the ensemble forecasts xi are integrated from

the truth Tr adding Gaussian noise with zero mean and some variance in the nonlinear

dynamical system. Then the ensemble mean indicates the best forecast without adapting

the forecast assimilation. The distribution of the ensemble members (denoted as EMem)

is stretched by a linear regime of the error growth at the beginning of the forecast. After

that, the nonlinear e®ect becomes dominant to distort the distribution. The forecast

assimilation is then started when the errors of the ensemble forecasts have grown to a

certain threshold.

For the forecast assimilation, the EMem xi is regarded as the predicted observation

xo. Then the observation error covariance matrix R is obtained by Eq. (3.5) using the

EMem xi and Tr xt as

R = (xi ¡ xt)(xi ¡ xt)T : (3.19)

Similarly, the forecast error covariance matrix Pf is obtained by Eq. (3.4) using the

control forecast xf as

Pf = (xf ¡ xt)(xf ¡ xt)T : (3.20)

Since the mean and variance of the error for the individual EMem from the Tr theoretically

equals to an error for the control forecast xf , the relation between R and Pf is considered

as

R = Pf : (3.21)

If all EMem are available to the forecast assimilation at the same time, the cost
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function J from Eq. (3.9) is given by

J(x) =
1
2

(
(x¡ xf )TP¡1

f (x¡ xf ) +
nX

i=1
(x¡ xi)TP¡1

f (x¡ xi)
)
: (3.22)

The gradient of J is obtained by di®erentiating Eq. (3.22) with respect to x,

rJ(x) = P¡1
f (x¡ xf ) +

nX

i=1
P¡1
f (x¡ xi): (3.23)

At the minimum of J, the gradient cost function of Eq. (3.23) is given by

rJ(x) = 0: (3.24)

Since xf is considered as a zero-th EMem (xf = x0), so Eq. (3.23) is rewritten by

nX

i=0
P¡1
f (x¡ xi) = 0: (3.25)

Therefore, we obtain the best analysis xa as

xa =
Pn
i=0 xi
n+ 1

: (3.26)

This equation indicates the ensemble mean. Therefore, the consequence of the forecast

assimilation using the 3D-Var results in the ensemble mean of the EMem.

3.2.2 Forecast Assimilation using Kalman Filter

First, a truth (Tr) is integrated using the Lorenz model with an initial state given by

(x0; y0; z0) = (1:508870; ¡1:531271; 25:46091) for time t = 0:0 to t = 50000:0 with

0.001 time step. The Tr is divided into 5000 sectors for every ¢t = 10:0 (denoted as

0.0T to 10.0T). The examination of the forecast assimilation is carried out for the every

sector. A control forecast (CF) and 200 members of the ensemble forecast are integrated

from the start point of each sector of the Tr adding Gaussian noise with zero mean and
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variance equals to 0.0025. First, the observation error covariance matrix R at Eq. (3.18)

is calculated from the 100 members of the ensemble forecast. The remaining 100 members

are utilized for the forecast assimilation. Figure 3.7 shows the initial distribution of the

Tr, CF, 100 members of ensemble forecast, and the ensemble mean (EM) on x-y plane

at 0.0T for an example of a sector. The average root mean square (RMS) error of the

CF and the each ensemble member EMem against the Tr is 0.05. Nevertheless, the RMS

error of the EM nearly equals to zero because the distribution of the ensemble members

(EMem) is Gaussian around the Tr. As a time proceeds, the EMem diverge by the linear

and nonlinear e®ects of the Lorenz model, so the RMS error of the EMem exponentially

increases, and the unimodal distribution evolves into a bimodal distribution.

As the ¯rst example, we describe one result of the forecast assimilation on a sector

with a good forecast skill. The forecast assimilation is started at 3.5T with 0.001 time

step, and a predicted observation is randomly chosen from the 100 EMem. Figure 3.8

illustrates forecast distributions of the Tr, CF, EMem, and EM on x-y plane at 3.5T. The

distribution of the EMem describes an arc, and the Tr and CF lie on the arc. The EM,

however, is located apart from the arc.

The ¯rst step of the forecast assimilation is that the randomly chosen EMem is assim-

ilated into the CF in Fig. 3.1. Figure 3.9 shows trajectories and RMS error of the Tr, CF,

EM, forecast from the ensemble mean (FEM), and assimilated forecast (AF) on the early

stage (to 3.68T) of the sector examined. The predicted observation is scattered below

the Tr on x and y planes. At the beginning, trajectory of the AF in Fig 3.1 (a) { (c) is

°uctuated due to searching the Tr for the e®ect of the forecast assimilation with model

integration. The other forecasts (CF, FEM, and EM) become relaxed trajectories for the

e®ect of the only model integration. Even though the RMS error of the AF also °uctu-

ates, it decreases to the error level that is lower than the EM. Then the RMS error of the
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AF becomes stable at 3.56T in spite of large spread of the predicted observation. Figure

3.10 illustrates the early evolution of the forecast distributions of the Tr, CF, EMem,

EM, FEM, and AF on x-y plane. Although the AF approaches to the Tr at 3.525T, it is

located farther than the EM from the Tr at 3.550T. After 3.575T, the AF is located in

the neighborhood of the EM, but slightly closer to the Tr. The location of the FEM is

almost overlaid on the EM in this forecasting range.

Continuously, the forecast assimilation is calculated. Figure 3.11 shows continuous

results of Fig. 3.9. After time 4.0T, the distribution of the predicted observations spreads

widely around the Tr, and the CF is apart continuously from the Tr. Then, the °uctu-

ation of the AF is increasing for the spread predicted observations from Eq. (3.13) and

reinforcement of the nonlinearity in the model states from Eqs. (3.10) and (3.17). Figure

3.12 plots the time variation of the norm of the Kalman gain matrix. The range of the

forecast time is same as in Fig 3.11. When the norm of the Kalman gain is large, the

status of the trajectory is unstable from Eq. (3.17), and mixing ratio of the predicted

observation into the background is increasing from Eq. (3.14). Although in Fig. 3.11 the

AF accumulates the observations with large error, the trajectory of the AF is close to the

Tr, and the RMS error becomes one or two order smaller than the other forecasts. Figure

3.13 illustrates continuation of Fig. 3.10. A unimodal distribution of the EMem at 3.6T

in Fig. 3.10 is stretched at 4.0T and changes to bimodal at 4.5T. Then, the EM is seen

at the center of the two distributions. Therefore, the RMS error of the EM is larger than

the AF at 4.5T even if the EM is located in the neighborhood of the Tr and the AF at

4.0T. On the other hand, the AF that has obtained some positional information about

the Tr from some predicted observations lays on the Tr at 4.5T.

The forecast assimilation experiment is repeated for 5000 sectors to increase the sta-

tistical con¯dence. The 5000 sectors have each di®erent initial states. Figure 3.14 shows
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the distribution of the initial states of the 5000 sectors on the Lorenz model. To compare

with Fig. 3.2, the distribution of the initial states almost covers the trajectory of the

Lorenz model. Therefore, it is indicated that the averaged results of the 5000 repeated

forecasts become independent of the initial states.

Figure 3.15 illustrates averaged RMS error for 5000 samples of the CF, EM, FEM,

and AF. In this case, it is indicated that the averaged RMS error of each EMem is

comparable to the error level of the CF. The RMS error of all forecasts except for the

AF are exponentially growing at the early stage. Specially the error of the FEM rapidly

grows. After the 5.0T, the error growth speeds are slow down, and the errors gradually

saturates by the nonlinear e®ect. In this situation, all forecast assimilations in every

sector are started at 3.5T. The RMS error of the AF, which has the same error as the

CF at the starting time of assimilation, decreases below the EM in a short time. After

3.8T, the RMS error of the AF is exponentially increasing as in the CF or EM. At 6.0T,

the RMS error of the AF exceeds the EM and the FEM. When the RMS error of the CF

or EMem approach to the saturated level, the predicted observation used by the forecast

assimilation has little positional information of the true state. Therefore, the error of the

AF close to the saturated level grows more rapidly than the normal forecast. Then the

EM approaches to the climatology.

The e®ect of the forecast assimilation depends on the distribution of the EMem. Im-

mediately after the start of the ensemble forecast, the distribution is similar to Gaussian

for the linear regime of the error growth. If the forecast assimilation starts earlier than

3.5T, it is expected that the AF collects better positional information about the Tr be-

cause the EMem are close to the normal distribution that is favorable to the Kalman

¯lter. Likewise, the state of the EM and the initial state of the FEM are signi¯cantly

close to the Tr for hyper elliptic distribution. Therefore, it is necessary to compare the
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forecast skill of the AF with the CF, the FEM, and the EM in various starting times of

the forecast assimilation.

Figure 3.16 illustrates the ratio of RMS error of the AF against the CF. The abscissa

indicates the forecast time and the ordinate indicates the starting time of the forecast

assimilation. The area where the AF is more skillful than the CF is shaded (the ratio is

smaller than 1). In this result, the error level of the CF as time proceeds is comparable to

RMS error of the CF in Fig. 3.15. Similarly, the average error of each EMem is comparable

to RMS error of the CF in Fig. 3.15. Until 6.0T forecast time, the forecast skill of the AF

is superior to the CF regardless of the starting time of the forecast assimilation. After

the 6.0T starting time of the forecast assimilation, the skill of AF is inferior to the CF

because the error of the predicted observation for the forecast assimilation is saturated.

Figure 3.17 illustrates the ratio of RMS error of the AF against the FEM. Until 2.0T

starting time of the forecast assimilation, the forecast skill of the AF is inferior to the

FEM regardless of the forecast time, because the EM is close to the Tr for hyper elliptic

distribution of the EMem. After 2.0T starting time of the forecast assimilation, the skill

of the AF is superior to the forecast from the ensemble forecast. Since the EM is detached

from the center of the distribution of the EMem for the nonlinear e®ect, the EM for the

initial state is unstable to predict the Tr. On the other hand, the AF is considered that

the error growth for the nonlinear e®ect along the time evolution.

Figure 3.18 illustrates the ratio of RMS error of the AF against the EM. From 2.5T

to 6.0T forecast time, the forecast skill of the AF is superior to the EM irrespective of

the starting time of the forecast assimilation. The distribution of the EMem is slightly

folded by the nonlinear e®ect, so the EM is detached from the center of the distribution

of the EMem. The AF is, however, inferior before 2.5T, since the EM is located near the

Tr by the assumption of the error distribution centered around the Tr. In addition, it
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is inferior after 6.0T, since the EMem have little positional information of Tr because of

saturated forecast error of the EMem. Nevertheless, the AF has a good performance at

the intermediate where the nonlinear growth dominates but is not saturated.
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Figure 3.7: Initial distribution of the true run, control forecast CF, ensemble members,
and the ensemble mean EM on x-y plane at 0.0T. The ensemble members are normally
distributed around the truth.
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Figure 3.8: Same as Fig 3.7, but for the starting point of the forecast assimilation at 3.5T.
The distribution of the forecast describes an arc.
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Figure 3.9: Forecasting result of the truth, control forecast CF, ensemble mean EM,
forecast from ensemble mean FEM, predicted observation, and assimilated forecast AF
from 3.48T to 3.68T. The forecast assimilation is started at 3.5T. (a) time variation of
value of x variable. (b) y variable. (c) z variable. (d) RMS error for CF, EM, FEM, and
AF.

(a)

(b)

(c)

(d)



CHAPTER 3. FORECAST ASSIMILATION 77

Figure 3.10: Evolution of the forecast distributions of the true run, control forecast,
ensemble members, the ensemble mean, forecast from ensemble mean, and assimilated
forecast on x-y plane.
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Figure 3.11: Same as Fig. 3.9, but from 3.4T to 5.0T.

(a)

(b)

(c)

(d)
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Figure 3.12: Norm of Kalman gain matrix. The range of the forecast time is same as Fig
3.11
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Figure 3.13: Evolution of the forecast distributions of the true run, control forecast,
ensemble members, the ensemble mean, and assimilated forecast on x-y plane.
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Figure 3.14: Distribution of the initial states of the 5000 sectors on the Lorenz model.
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Figure 3.15: Averaged RMS error for the 5000 samples of the control forecast, ensemble
mean, forecast from ensemble mean, and assimilated forecast. The forecast assimilation
is started at time 3.5T.
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Figure 3.16: Ratio of RMS error of the assimilated forecast to the control forecast. The
abscissa indicates the forecast time and the ordinate indicates the starting time of the
forecast assimilation. The part of that the assimilated forecast is more skillful than the
control forecast is shaded (the ratio is smaller than 1).
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Figure 3.17: Similar to 3.16, but the ratio of RMS error of the assimilated forecast to the
forecast from the ensemble mean.
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Figure 3.18: Similar to 3.16, but the ratio of RMS error of the assimilated forecast to the
ensemble mean.



Chapter 4

Discussion

4.1 Atmospheric Predictability

Here, we discuss estimating the atmospheric predictability using the behavior of the dif-

ference of the analog pair. In the historical data, the RMS di®erence of the most analog

pair is about half of the average RMS which represents the climatological mean range

of the °uctuation (see Table 2.1). Then, the initial RMS di®erence of the analog pair

represents as E0 = 1=2E1. Substituting 1=2E1 for E0 in Eq. (2.3), we obtain,

dE
dt

= ®
³E1

2

´
¡ ®
E1

³E1
2

´2
=
®
2
E1 ¡

®
4
E1: (4.1)

This result indicates that the nonlinear e®ect contributes to the di®erence growth of the

analog pair. Therefore, the components of the di®erence growth shown in Fig. 2.3 con-

tain the nonlinear error growth e®ect as well as the linear e®ect. On the other hand,

the local instability of the atmospheric global circulation is characterized by its singular

vector (Buizza and Palmer 1995). The structure of the singular vector indicates the di-

rection and amplitude of the initial perturbation by the tangent linear model. Figure 4.1

shows the vorticity maximum of the distribution of the ¯rst singular vectors for winter
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case. Buizza and Palmer (1995) showed that the vorticity maxima of the singular vec-

tor are located in three areas in the Northern Hemisphere: the east Asian/west Paci¯c,

the northern American/west Atlantic, and the northern subtropical African. The east

Asian/west paci¯c and the northern American/west Atlantic regions are well known as

areas of midlatitude cyclogenesis. The small perturbations generated at the west Paci¯c

or Atlantic are propagated to downstream while they are developed with the cyclogenesis.

Compared with Fig. 2.3, the vorticity maxima of the singular vectors are located just

upstream of the di®erence growing areas of the analog pairs except the northern subtrop-

ical African region. The results suggested that the di®erence growing areas correspond

to the arrival areas of the propagated perturbations by the cyclogenesis. Therefore, the

di®erence growth rate in Eq. (2.6) principally results from the the cyclogenesis in the

midlatitude.

The atmospheric predictability is often a®ected by the boundary conditions, such as

El Ni~no and La Ni~na, and the atmospheric basic °ow patterns, such as PNA and NAO.

The atmospheric feature during PNA+ and NAO+ years apparently has slower di®erence

growth than the average (see Table 2.5). On the other hand, La Ni~na and PNA- have

faster di®erence growth than the average. In the case of hindcast experiment, the RMS

error for the hindcast becomes clear inverse correlation with PNA index. The reason

for the di®erent growth rates by the di®erent atmospheric conditions is considered by

characteristics of the atmospheric inherent pattern as follows. During PNA- year, the

atmospheric °ow pattern tends to generate a blocking over the North Paci¯c (Renwick

and Wallace 1996). The blocking denotes a breakdown in the prevailing tropospheric

westerly °ow at midlatitude, often associated with a split in the zonal jet and with per-

sistent ridging at high latitudes (Rex 1950; LejenÄas and Âkland 1983). The forecasting

of the blocking is one of the main problems for the medium-range forecast due to its

nonlinearity (Pelly and Hoskins 2003). So, the forecast skill is reduced in the vicinity of



CHAPTER 4. DISCUSSION 88

the blocking. Therefore, the forecast error during the PNA- years tend to increase over

the North Paci¯c region, which is shown in Fig. 2.16. Contrary to the PNA- years, the

atmospheric °ow pattern during the PNA+ year tends to generate non-blocking over the

North Paci¯c. Additionally, the atmospheric variability during PNA+ years is smaller

than other conditions in Fig. 2.9. Then the atmosphere tends to derive analogous °ow

pattern. Therefore, the di®erence growth rate during PNA+ years is smaller than other

years. On the other hand, during El Ni~no (La Ni~na) years, the PNA+ (PNA-) pattern

tends to occur relatively frequently (Horel and Wallace 1981). In the hindcast experi-

ments, the map of the RMS error distribution is also similar to the PNA+ (PNA-). This

result suggests that the in°uences of the El Ni~no or La Ni~na are secondary for the initial

di®erence growth.

The hindcast veri¯es the role of the boundary and the basic °ow pattern for the at-

mospheric predictability. Since the hindcast is retrospective forecast by the operational

numerical forecast model, it is necessary to notice that the error growth element of the

hindcast includes not only the atmospheric instability and nonlinearity but also the imper-

fectivity of the model and inevitable initial error. It is considered that the imperfectivity

of the model contributes to the initial error growth in Fig. 2.18 until 2 or 3 days. Then the

hindcast error signi¯cantly grows faster than the theoretical error growth. Additionally,

the boundary e®ect and the basic °ow pattern for the error growth disappears until 3

days hindcast in Fig. 2.14. After the 3 days, the inverse correlation between the RMS

error and the PNA index is clearly seen. Then, the result suggests that the boundary

condition and the basic °ow pattern have in°enced the initial error growth.
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Figure 4.1: The distribution of the ¯rst singular vectors for winter case. The position of
each singular vector is determined by its vorticity maximum. (From Buizza and Palmer
1995)
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4.2 Forecast Assimilation

The consequence of the forecast assimilation using the 3D-Var results in the ensemble

mean of the ensemble members. The reason is considered by characteristics of the 3D-

Var. The assimilated values by the 3D-Var most closely ¯t both the predicted observations

and forecast, as measured by the cost function in Eq. (3.3). At the ¯rst step of the forecast

assimilation, the mean and variance of the error for the individual ensemble members from

the truth theoretically equals to an error of the control forecast. Therefore, the observation

and forecast error covariance matrix are the same matrix form in this situation. This

means that the forecast assimilation derives the ensemble mean as the solution by 3D-

Var. It is indicated that the forecast assimilation requires the time evolution of the forecast

error with the dynamical process as well as the ensemble forecasts to improve the forecast

skill.

The reasons for the superior performance of the assimilated forecast may be explained

by the following characteristics of the Kalman ¯ler. (1): Immediately after the starting

point of the forecast assimilation, the assimilated forecast searches the true value contained

in the ensemble members because P(ti) = R(ti) has been assumed at the beginning. In

this range the Kalman ¯lter can quickly reduce the error of the assimilated forecast. (2):

Then, in the direction of the error growth of the linearized Lorenz model, the Kalman

¯lter can quickly reduce the error because P(i) contains information about the unstable

direction by its history. (3): Conversely, near the saturation of the error as seen in Fig.

3.18 at time larger than 6.0T, the Kalman ¯lter rather increases the error by assimilating

ensemble members without information about the truth.

Based on the above remarks, let us assume that the distribution of the ensemble mem-
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bers has been separated in two groups by the dynamical instability. Then the ensemble

mean chooses just the center of the two separated groups regardless of the stability of the

separated trajectories. In contrast, the trajectory of the assimilated forecast randomly

chooses one of the two groups because the predicted observation is randomly selected.

After the branch point, we assume that there are two results of the assimilated forecast:

one becomes stable trajectory, and the other becomes unstable trajectory. In the former

(latter) case, the assimilated forecast absorbs relatively less (much) positional information

of the predicted observations that are included in the two groups. Repeating the forecast

assimilations, the trajectory of the assimilated forecast in the former (latter) case becomes

smooth (°uctuative), and it is di±cult (easy) to shift to the unstable (stable) trajectory.

Therefore, the assimilated forecast tends to move from the unstable to the stable tra-

jectory. Since the stable trajectory is one of the most suitable solutions in the ensemble

forecast, the forecast skill becomes superior to the ensemble mean in the nonlinear regime.

One point to notice in our examination is that the Gaussian distribution of the per-

turbations has been assumed around the true initial state for the ensemble members.

Therefore, the mean of the ensemble members knows the true value at the beginning. Af-

ter the nonlinear e®ect of the forecast error is dominated, the forecast assimilation would

searches for the truth better than the ensemble mean. If the analysis errors and model er-

rors are cancelled as expected in the multi-analysis multi-model, the forecast assimilation

would be one of the viable approaches to the medium or extended range forecast.

Nevertheless, it is necessary to notice that the forecast assimilation has several prob-

lems to adopt the operational forecast system directly. The forecast assimilation for this

experiment is applied to the Lorenz model that has only 3 degree of freedom dynamics

compared with 100 ensemble members for the predicted observation. On the other hand,

the operational numerical model has 106 » 107 order of the degree of freedom compared
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with 10 » 100 ensemble members. The number of the ensemble members is extremely

less than the model's degree of freedom. Therefore, there is a possibility that the forecast

assimilation can not perform a good forecast skill for the operational forecast. Moreover,

the Kalman ¯lter requires to calculate the inverse matrix of the linearized model which

has 106 » 107 order size. The calculation steps of n-th order of the matrix inverse requires

n3 times by Gaussian elimination. It is extremely di±cult to calculate the inverse matrix

in spite of using the latest supercomputer. Therefore, the forecast model for the forecast

assimilation is replaced by the use of simplifying assumptions such as a lower order model.

However, the forecast assimilation applied to the large numerical model would be reserved

for a future works.
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Conclusions

In the ¯rst part of this study, the di®erence growth rate for the atmosphere was examined

based on analog weather maps in the NCEP/NCAR reanalysis for 54 years. Although a

total of 185,547,600 pairs of the weather maps are searched, there are no good analog pairs

to investigate the di®erence growth rate for a su±ciently small initial di®erence E0 of the

analog pairs. However, the behavior of the di®erence of the analog pair is approximated

by a quadratic error growth model which allows an exponential di®erence growth rate.

The behavior of the small di®erence is explained by a quadratic error growth model. To ¯t

the quadratic error growth model to the scattergram between the limit of predictability P

and E0, it is estimated that P extends 2.88 days when E0 is reduced to 1=e for su±ciently

small E0. The di®erence growth rate is principally resulted from the cyclogenesis in the

midlatitude because the di®erence growing regions for the analog pairs are located at the

north Paci¯c and the north Atlantic.

The di®erence growth rate is variable by the boundary condition, such as El Ni~no

and La Ni~no, and atmospheric basic °ow pattern, such as PNA and NAO. In the case of

PNA+ and NAO- (e-folding time of 3.17 and 3.07 days, respectively), the di®erence of the
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analog pairs grows slower than the average. Conversely, in the case of La Ni~na and PNA-

(e-folding time of 2.69 and 2.72 days, respectively), the di®erence grows faster than the

average. Comparisons of the error growth during the El Ni~no/La Ni~na, PNA+/PNA-, and

NAO+/NAO- were made by the hindcast. Little di®erence of the di®erence growth could

be seen in the cast of El Ni~no/La Ni~no and NAO+/NAO-. Conversely, the di®erence grows

faster during the PNA- years than the PNA+ year. However, since the atmospheric °ow

pattern during the El Ni~no (La Ni~na) years tend to produce the PNA+ (PNA-) pattern,

the in°uences of the El Ni~no or La Ni~na were secondary for the initial di®erence growth.

In the next part of this study, a new type of ensemble forecast assimilation technique

was developed in order to improve the forecast skill in the nonlinear dynamical system.

The forecast assimilation is an analysis technique in which true value contained in each

ensemble forecast is accumulated into a single assimilated forecast such as a data assim-

ilation. For the experiments, we used a Lorenz model, and a Kalman ¯lter was applied

for the forecast assimilation.

The experiments were started by calculating 101 members of the ensemble forecast

in which the initial error with Gaussian distribution was superimposed around the true

run, and one of the members was arbitrarily selected as a control forecast. The exper-

iments of the forecast assimilation were repeated 5000 times for di®erent sectors of the

solution trajectory to obtain the statistical signi¯cance of the results. The distribution

of the ensemble members was stretched by a linear instability of the error growth at the

beginning of the forecast. After that, the nonlinear e®ect became dominant to distort the

distribution. The forecast assimilation was then started when the errors of the ensemble

forecasts have grown to a various threshold of the forecast time.

It was demonstrated that the forecast skill of the assimilated forecast is always superior
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to the control forecast. In the range of the small RMS error of the ensemble forecasts,

the skill of the assimilated forecast is inferior to the ordinary ensemble mean. Since the

distribution of the ensemble forecasts is similar to the hyper ellipsoid until the nonlinear

e®ect becomes dominant, the center of the distribution is always close to the truth. After

the distribution was folded by the nonlinear e®ect, the ensemble mean is detached from

the distribution of the ensemble members. From 3.0T to 6.0T of the forecast time in

Fig. 3.18, the skill of the assimilated forecast was superior to the ensemble mean. After

6.0T forecast time, the skill of the assimilated forecast is poorer than the ensemble mean,

since the ensemble members have little positional information of the truth for saturated

forecast errors of the ensemble members. Nevertheless, the assimilated forecast has a

good performance at the intermediate range where the nonlinear growth dominates but

is not saturated.



Acknowledgments

The author would like to acknowledge to Dr. H. L. Tanaka of Institute of Geoscience,

University of Tsukuba, for guidance and advice in the formulation of this problems. The

author is grateful to Prof. F. Kimura of Institute of Geoscience, University of Tsukuba,

for helpful suggestions and encouragement for this work. The authors would like to thank

Prof. T. Yasunari, University of Nagoya, Prof. A. Kitoh, Meteorological Research Insti-

tute, and Dr. H. Ueda of Institute of Geoscience, University of Tsukuba, for their helpful

comments and discussion. Several helpful discussions with Dr. K. Takano and Dr. S.

Maeda, Mr. M. Kyouda, Japan Meteorological Agency, are gratefully acknowledged. The

author wishes to express his gratitude to Dr. A. Hasegawa, University of Tokyo, Mr. M.

Hayasaki, National Institute for Environmental Studies, Mr. Y. Kurosaki, Meteorological

Research Institute, Mr. O. Arakawa, Meteorological Research Institute, Mr. M. E. Hori

of Institute of Environment Science, University of Tsukuba, Dr. Y. Terao, National In-

stitute for Environmental Studies, Mr. Y. Kajikawa, University of Nagoya, and Mr. T.

Sasaki, Frontier Observational Research System for Global Change, for frequent, stimu-

lating, and helpful discussions. Thanks are due to Mr. Y. Watarai, Ms. N. Ishizaki and

member of Group of Climate and Meteorology, University of Tsukuba, with whom I have

discussed this problem.

It is also a pleasure to acknowledge the hospitality and encouragement of Prof. T.

96



ACKNOWLEDGMENTS 97

Tanaka, Dr. H. Ikeda, Dr. J. Asanuma, Dr. T. Yamanaka, Dr. B. Lee, Dr. K. Mokudai,

Dr. S. Ioka, and Mr. H. Iijima of the Terrestrial Environment Research Center, University

of Tsukuba. The author appreciates Ms. K. Honda of Institute of Geoscience, University

of Tsukuba, Ms. A. Shiozawa, Ms. A. Takasu, Ms. T. Kurokawa, and Ms. H. Hayashida

of the Terrestrial Environment Research Center, University of Tsukuba, for their technical

assistance.



References

Alhamed, A., and S. Lakshmivarahan, 2002: Cluster analysis of multimodel ensemble

data from SAMEX. Mon. Wea. Rev., 130, 226{256.

Anderson, J. L., 1997: The impact of dynamical constraints on the selection of initial

conditions for ensemble predictions: low-order perfect model results. Mon. Wea.

Rev., 125, 2969{2983.

Anderson, J. L., 2001: An ensemble adjustment Kalman ¯lter for data assimilation.

Mon. Wea. Rev., 129, 2884{2903.

Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the non-

linear ¯ltering problem to produce ensemble assimilation and forecasts. Mon. Wea.

Rev., 127, 2741{2758.

Andersson, E., J. Haseler, P. Und¶en,P. Courtier, G. Kelly, D. Vasiljevi¶c, C. Brankovi¶c,

C. Cardinali, C. Ga®ard, A. Hollingsworth, C. Jakob, P. Janssen, E. Klinker,

A. Lanzinger, M. Miller, F. Rabier, A. Simmons, B. Strauss, J. N. Th¶epaut, and

P. Viterbo 1998: The ECMWF implementation of three-dimensional variational

assimilation (3D-Var). III: Experimental results. Q. J. R. Meteorol. Soc., 124,

1831{1860.

Andersson, E., A. Hollingsworth, G. Kelly, P. LÄonnberg, J. Pailleux, and Z. Zhang, 1991:

Global observing system experiments on operational statistical retrievals of satellite

98



REFERENCES 99

sounding data. Mon. Wea. Rev., 119, 1851{1864.

Barsugli, J. J., J. s. Whitaker, A. F. Loughe, P. D. Sardeshmukh, and Z. Toth, 1999:

The e®ect of the 1997/98 El Ni~no on individual large-scale weather events. Bull.

Amer. Meteor. Soc., 80, 1399{1411.

Bouttier, F., and P. Courtier, 1999: Data assimilation concepts and methods. ECMWF

Meteorological Training Course Letter Series.

Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill

distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125,

99{119.

Buizza, R., J. Barkmeijer, T. N. Palmer, and D. S. Richardson, 2000: Current status and

future developments of the ECMWF ensemble prediction system. Meteorol. Appl.,

7, 163{175.

Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric

global circulation. J. Atmos. Sci., 52, 1434{1456.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble

assimilation and forecasts. Mon. Wea. Rev., 126, 1719{1724.

Chen, W. Y., 1989: Estimate of dynamical predictability from NMC DERF experiments.

Mon. Wea. Rev., 117, 1227{1236.

Chen, W. Y., and H. M. Van den Dool, 1997: Atmospheric predictability of seasonal,

annual, and decadal climate means and the role of the ENSO cycle: a model study.

J. Climate, 10, 1236{1254.

Chu, P. C., 1999: Two kinds of predictability in the Lorenz system. J. Atmos. Sci., 56,

1427{1432.



REFERENCES 100

Courtier, P., 1997: Variational methods. J. Meteor. Soc. Japan, 75, 211{218.

Courtier, P., E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevi¶c, M. Hamrud, A. Hollingsworth,

F. Rabier, and M. Fisher, 1998: The ECMWF implementation of three-dimensional

variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc., 124,

1783{1807.

Dalcher, A. and E. Kalnay, 1987: Error growth and predictability in operational ECMWF-

forecasts. Tellus, 39, 474{491.

Daley, R., 1991: Atmospheric data analysis. Cambridge University Press, 457 pp.

Daley, R., 1997: Atmospheric data assimilation. J. Meteor. Soc. Japan, 75, 319{329.

Doblas-Rayes, F. J., M. D¶equ¶e, and J.-P. Piedelievre, 2000: Multi-model spread and

probabilistic seasonal forecasts in PROVOST. Q. J. R. Meteorol. Soc., 126, 2069{

2087.

Errico, R. M., R. Langland, and D. P. Baumhefner, 2002: The workshop in atmospheric

predictability. Bull. Amer. Meteor. Soc., 83, 1341{1343.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model

using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5),

10143{10167.

Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon.

Wea. Rev., 125, 1342{1354.

Evensen, G. and N. Fario, 1997: Solving for the generalized inverse of the Lorenz model.

J. Meteor. Soc. Japan, 75, 229{243.

Fritsch, J. M., J. Hilliker, J. Ross. and R. L. Vislocky, 2000: Model consensus. Wea.

Forecasting, 15, 571{582.



REFERENCES 101

Gekaro, R., R. Buizza, T. N. Palmer, and E. Klinker, 1997: Sensitivity analysis of the

forecast errors and the construction of optimal perturbation using singular vectors.

J. Atmos. Sci., 55, 1012{1037.

Gutzler, D. S. and J. Shukla, 1984: Analogs in the wintertime 500 mb height ¯eld. J.

Atmos. Sci., 41, 177{189.

Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A comparison of probabilistic forecasts

from bred, singular-vector, and perturbed observation ensembles. Mon. Wea. Rev.,

128, 1835{1851.

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent ¯ltering of

background error covariance estimates in an ensemble Kalman ¯lter. Mon. Wea.

Rev., 129, 2776{2790.

Hamill, T. M., J. S. Whitaker, and X. Wei, 2003: Ensemble re-forecasting: improv-

ing medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev..

(submitted)

Harrison, M. S. J., T. N. Palmer, D. S. Richardson, and R. Buizza, 1999: Analysis and

model dependencies in medium-range ensembles: two transplant case-studies. Q. J.

R. Meteorol. Soc., 125, 2487{2515.

Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associ-

ated with the southern oscillation. Mon. Wea. Rev., 109, 813{829.

Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere

winter storm tracks. J. Atmos. Sci., 59, 1041{1061.

Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea.

Rev., 123, 2181{2196.



REFERENCES 102

Hurrell, J. W., 1995: Decadal trends in the north atlantic oscillation: regional tempera-

tures and precipitation. Science, 269, 676{679.

Kalman, R., and R. Bucy, 1961: New results in linear prediction and ¯ltering theory

Trans. AMSE, J. Basic Eng., 83D, 95-108.

Kalnay, E., 2002: Atmospheric modeling data assimilation and predictability. Cambridge

University Press, 341 pp.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell,

S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins,

J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne,

and D. Joseph, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer.

Meteor. Soc., 77, 437{471.

Kalnay, E., S. J. Lord, and R. D. McPherson, 1998: Maturity of operational numerical

weather prediction: medium range. Bull. Amer. Meteor. Soc., 79, 2753{2769.

Kharin, V. V., and F. W. Zwiers, 2002: Climate prediction with multimodel ensembles.

J. Climate, 15, 793{799.

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki,

M. Kanamitsu, V. Kousky, H. Van den Dool, R. Jenne, and M. Fiorino, 2001: The

NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation.

Bull. Amer. Meteor. Soc., 82, 247{268.

Klinker, E., F. Rabier, G. Kelly, and J. f. Mahfouf, 2000: The ECMWF operational

implementation of four-dimensional variational assimilation. III: Experimental re-

sults and diagnostics with operational con¯guration. Q. J. R. Meteorol. Soc., 126,

1191{1215.



REFERENCES 103

Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhanf, C. E. Willi-

for, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate

forecasts from multimodel superensemble. Science, 285, 1548{1550.

Krishnamurti, T. N., C. M. Kishtawal, Z. Zhanf, T. LaRow, D. Bachiochi, and E. Willi-

ford, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J.

Climate, 13, 4196{4216.

Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical

and extratropical SST anomalies in the variability of the global atmosphere-ocean

system. J. Climate, 7, 1184{1207.

LejenÄas, H. and H. Âkland, 1983: Characteristics of Northern Hemisphere blocking as

determined from a long time series of observational data. Tellus, 35, 350{362.

Lin, H., and J. Derome, 1996: Changes in predictability associated with the PNA pat-

tern. Tellus, 48A, 553{571.

Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation

scheme. Mon. Wea. Rev., 109, 701{721.

Lorenz, E. N., 1963: Deterministic nonperiodic °ow. J. Atmos. Sci., 20, 130{141.

Lorenz, E. N., 1969a: Three approaches to atmospheric predictability. Bull. Amer.

Meteor. Soc., 50, 345{349.

Lorenz, E. N., 1969b: Atmospheric predictability as revealed by naturally occurring

analogues. J. Atmos. Sci., 26, 636{646.

Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical

model. Tellus, 34, 505{513.



REFERENCES 104

Mahfouf, j. f., and F. Rabier, 2000: The ECMWF operational implementation of four-

dimensional variational assimilation. I: Experimental results with improved physics.

Q. J. R. Meteorol. Soc., 126, 1171{1190.

Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly

nonlinear dynamical systems. J. Atmos. Sci., 51, 1037{1056.

Molteni, F., R. Buizza, T. N. Palmar and T. Petroliagis, 1996: The ECMWF ensemble

prediction system: methodology and validation. Q. J. R. Meteorol. Soc., 122,

73{119.

Mukougawa, H., M. Kimoto, and S. Yoden, 1991: A relationship between local error

growth and quasi-stationary states: case study in the Lorenz system. J. Atmos.

Sci., 48, 1231{1237.

Murphy, J. M., 1988: The impact of ensemble forecast on predictability. Q. J. R.

Meteorol. Soc., 114, 463{493.

Mylne, K. R., R. E. Evans, and R. T. Clork, 2002: Multi-model multi-analysis ensembles

in quasi-operational medium-range forecasting. Q. J. R. Meteorol. Soc., 128, 361{

384.

Nohara, D. and H. L. Tanaka, 2001: Logarithmic relation between the initial error and

predictability for the barotropic component of the atmosphere. J. Meteor. Soc.

Japan, 79, 161{171.

Nohara, D. and H. L. Tanaka, 2004: Development of prediction model using ensemble

forecast assimilation in nonlinear dynamical system. J. Meteor. Soc. Japan (in

press)

Palmer, T. N., 1993: Extended range atmospheric prediction and the Lorenz model.

Bull. Amer. Meteor. Soc., 74 49{66.



REFERENCES 105
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List of Symbols

E RMS di®erence in 500 hPa geopotential height

E0 Initial RMS di®erence

El One standard deviation of E from the long term mean of the °uctuation in the

observed atmosphere

E1 Climatological mean of the atmospheric °uctuation of E

H Observation operator

H Linearized observation operator

I Identity matrix

J Cost function in 3D-Var

K Kalman gain matrix

M Nonlinear forecast model

M Tangent linear model matrix of the nonlinear forecast model

P Limit of predictability

Pf Forecast error covariance matrix

Pa Analysis error covariance matrix

Q Model error covariance matrix

R Observation error covariance matrix

Re Ensemble covariance matrix
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xa Analysis vector

xf Background vector

xo Observation vector

xt True state vector

Z Geopotential hight

® Error growth rate

¯ Parameter in Lorenz model

° Parameter in Lorenz model

¾ Parameter in Lorenz model


