# 平成24年度 卒業論文

# 線形化した順圧大気大循環モデルを用いた 北極振動と外力の関係の研究

# 筑波大学生命環境学群地球学類

地球環境学主専攻

200910794

# 越前谷涉

2013年2月

目 次

| 要        |             |       |                         |  |  |  |  |   |   |   |   |   | iii       |
|----------|-------------|-------|-------------------------|--|--|--|--|---|---|---|---|---|-----------|
| Al       | Abstract iv |       |                         |  |  |  |  |   |   |   |   |   |           |
| 汊        | 図目次 v       |       |                         |  |  |  |  |   |   |   |   |   |           |
| 1        | はじめに 1      |       |                         |  |  |  |  |   | 1 |   |   |   |           |
| <b>2</b> | 目的          |       |                         |  |  |  |  | 3 |   |   |   |   |           |
| 3        | 使用データ 4     |       |                         |  |  |  |  | 4 |   |   |   |   |           |
| 4        | 解析          | ī手法   |                         |  |  |  |  |   |   |   |   |   | 6         |
|          | 4.1         | 基礎方   | 程式                      |  |  |  |  |   |   |   |   |   | 6         |
|          | 4.2         | スペク   | トルプリミティプ方程式の導出          |  |  |  |  |   |   |   |   |   | 10        |
|          |             | 4.2.1 | 鉛直構造関数                  |  |  |  |  |   |   |   |   |   | 10        |
|          |             | 4.2.2 | 水平構造関数                  |  |  |  |  |   |   |   |   |   | 11        |
|          |             | 4.2.3 | 3次元ノーマルモード関数展開          |  |  |  |  |   |   |   |   |   | 14        |
|          | 4.3         | 外力の   | 算出                      |  |  |  |  |   |   |   |   |   | 19        |
|          | 4.4         | AOI方  | 7程式                     |  |  |  |  |   |   |   |   |   | 20        |
|          | 4.5         | 線形定   | 常応答                     |  |  |  |  | • | • | • | • | • | 22        |
| <b>5</b> | 結果          | Į     |                         |  |  |  |  |   |   |   |   |   | <b>24</b> |
|          | 5.1         | 北極振   | 動の正負における順圧高度と外力の構造.     |  |  |  |  |   |   | • | • |   | 24        |
|          | 5.2         | 順圧高   | <b>度の</b> EOF 解析        |  |  |  |  | • |   |   | • |   | 24        |
|          | 5.3         | 順圧高   | 度と外力、AOI 方程式の項との SVD 解析 |  |  |  |  |   |   | • | • |   | 24        |
|          |             | 5.3.1 | 日データを用いた解析              |  |  |  |  |   |   |   |   |   | 25        |
|          |             | 5.3.2 | 月平均データを用いた解析・・・・・・・     |  |  |  |  |   |   | • | • |   | 26        |
|          | 5.4         | 線形定   | 常応答                     |  |  |  |  |   |   | • | • |   | 27        |
|          |             | 5.4.1 | 線形マトリックスの構造の検証          |  |  |  |  |   |   | • | • |   | 28        |
|          |             | 5.4.2 | 線形定常応答と観測値の比較           |  |  |  |  | • | • | • | • | • | 28        |
| 6        | まと          | めと考   | 察                       |  |  |  |  |   |   |   |   |   | 29        |
|          | 6.1         | 高度場   | と外力、AOI方程式の各項の関係        |  |  |  |  |   |   |   |   |   | 29        |

|    | 6.2 <b>線形マトリックスによる</b> 定常応答          | 29 |
|----|--------------------------------------|----|
| 7  | 結論                                   | 31 |
| 8  | 謝辞                                   | 32 |
| 参  | 考文献                                  | 33 |
| Aj | ppendix                              | 35 |
|    | EOF 解析                               | 35 |
|    | EOF 解析とは                             | 35 |
|    | EOF 解析における固有ベクトルの計算方法                | 37 |
|    | ラグランジュの未定乗数法........................ | 40 |
|    | SVD 解析                               | 41 |
|    | SVD 解析とは                             | 41 |
|    | SVD 解析における特異ベクトルの計算方法                | 43 |

# 線形化した順圧大気大循環モデルを用いた

# 北極振動と外力の関係の研究

## 越前谷 涉

### 要旨

北極振動 (AO: Arctic Oscillation) は北半球冬季に北緯約 60 度を挟んで北極域 と中緯度地域で海面更正気圧が逆相関を持つ現象であり、北半球中高緯度の気候 に大きな影響を与える。AO の変動は北極振動指数 (AOI: AO Index) で表すが、 2009/10 年冬季には標準偏差の3 倍となる負の AOI が現れた。

本研究では、2009/10年冬季のAOについて外力の分布を明らかにすること、ま た順圧大気大循環モデルを線形化した方程式系において定常状態を仮定し、順圧 高度、外力を与えたときの線形応答する気象要素の分布を解析することを目的と する。

本研究の結果、2009/10年冬季、あるいは AO が顕著に現れた事例において、順 圧高度と外力の空間構造は正反対の分布をしており、外力は AO の構造を減衰さ せていることが分かった。続いて順圧高度と外力について SVD 解析を行い、月平 均データでは統計的にも外力が AO を減衰させている関係が強いことが示された。 日データの SVD 解析では外力が高度場を東進させている関係性を捉えた。また、 定常状態での線形応答では、観測値の外力と線形応答で求めた外力が似た構造を していた。一方で観測値の順圧高度と線形応答で求めた順圧高度は大きく異なる 構造をしており、観測値と計算結果の誤差が線形マトリックスの逆行列で増幅し ていることが明らかとなった。

キーワード:北極振動,順圧モデル,線形モデル,SVD解析,定常応答

# The Relationship between the Arctic Oscillation and its Forcing Analyzed by the Linear Barotropic Model

## Wataru Echizenya

## Abstract

The Arctic Oscillation (AO) has an impact on the climate in the Northern Hemisphere. The AO is characterized as the opposite sea level pressure pattern between the middle and high latitudes. The Arctic Oscillation Index (AOI) expresses the change of the AO, and it reached negative three times of the standard deviation in the winter 2009/10.

This study aims to examine the structure of the barotropic forcing in the winter 2009/10 and analyze the barotropic height and forcing calculated as the linear response to the barotropic atmosphere general circulation model assuming the steady state.

This study shows that the barotropic height and forcing are distributed in opposite sense to each other during the extreme events of the AO including the winter 2009/10. It means that the barotropic forcing damps the AO. This result is supported statistically by the monthly data Singular Value Decomposition (SVD) analysis. The daily data SVD analysis implies that the barotropic forcing moves the barotropic height eastward on the daily cycle. The linear response to the barotropic height on the steady state is similar to the observed barotropic forcing, while the response to the barotropic forcing do not match the observed barotropic height. The inverse matrix amplifies the error between the observed barotropic forcing and the computed barotropic forcing as the linear response.

**Key Words**: Arctic Oscillation, Barotropic model, Linear model, SVD analysis, Steady state response

# 図目次

| 1  | 2009/10 年冬季 (DJF) <b>の北半球の海面更正気圧 (気象庁提供)</b>        | 47 |
|----|-----------------------------------------------------|----|
| 2  | 定常応答計算に用いた線形マトリックスの構造........                       | 48 |
| 3  | 1975/76 年冬季 (DJF) の順圧高度と外力                          | 49 |
| 4  | 1976/77 年冬季 (DJF) の順圧高度と外力                          | 50 |
| 5  | 1988/89 年冬季 (DJF) の順圧高度と外力                          | 51 |
| 6  | 2009/10 年冬季 (DJF) の順圧高度と外力                          | 52 |
| 7  | NCEP/NCAR <b>のデータを用いた</b> 1950-2011 年の順圧高度の EOF-1 . | 53 |
| 8  | 1950-2011 年の順圧高度と外力の SVD-1(日データ)                    | 54 |
| 9  | 1950-2011 年の順圧高度と外力の SVD-2(日データ)                    | 55 |
| 10 | 1950-2011 年の順圧高度と AOI 方程式の線形項の SVD-1(日データ)          | 56 |
| 11 | 1950-2011 年の順圧高度と AOI 方程式の線形項の SVD-2(日データ)          | 57 |
| 12 | 1950-2011 年の順圧高度と AOI 方程式の非線形項の SVD-1(日データ)         | 58 |
| 13 | 1950-2011 年の順圧高度と AOI 方程式の非線形項の SVD-2(日データ)         | 59 |
| 14 | 1950-2011 年の順圧高度と外力の SVD-1(月データ)                    | 60 |
| 15 | 1950-2011 年の順圧高度と外力の SVD-2(月データ)                    | 61 |
| 16 | 1950-2011 年の順圧高度と AOI 方程式の線形項の SVD-1(月データ)          | 62 |
| 17 | 1950-2011 年の順圧高度と AOI 方程式の線形項の SVD-2(月データ)          | 63 |
| 18 | 1950-2011 年の順圧高度と AOI 方程式の非線形項の SVD-1(月データ)         | 64 |
| 19 | 1950-2011 年の順圧高度と AOI 方程式の非線形項の SVD-2(月データ)         | 65 |
| 20 | 線形マトリックスに粘性項を含めて計算した順圧高度の定常応答と                      |    |
|    | しての外力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 66 |
| 21 | 2009/10 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答               | 67 |
| 22 | 1975/76 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答               | 68 |
| 23 | 1976/77 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答               | 69 |
| 24 | 1988/89 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答               | 70 |
| 25 | 2009/10 年冬季 (DJF) の線形項、非線形項、外力項の比較                  | 71 |
|    |                                                     |    |

# 1 はじめに

北極振動 (AO: Arctic Oscillation) とは、Thompson and Wallace (1998) により 提唱された、北半球冬季に北緯約 60 度を挟んで北極域と中緯度地域で海面更正気 圧が逆相関を持つ現象である。AO は北半球冬季の海面更正気圧を経験直交関数 (EOF: Empirical Orthogonal Function) 展開したときの第一主成分として定義さ れる。また、その北極域と中緯度の気圧の変動の指標を北極振動指数 (AOI: AO Index) で表す。2009/10 年冬季には標準偏差の 3 倍となる負の AOI が現れた。図 1 は 2009/10 年冬季における北半球中高緯度の海面更正気圧とその気候値からの偏 差を示している。北極域で正偏差、それを取り囲むように中緯度地域で負偏差と なっている。AOI が正のときはポーラージェットが強化されており、ヨーロッパで は温和で雨が多くなり、日本でも温和となる。AOI が負のときは対称的にジェット が弱まり、寒気が流入してヨーロッパ、日本で寒くなる傾向がある (田中 2004)。

Matsueda and Tanaka (2005) は大気の順圧成分を SVD 解析し、線形項、非線 形項、外力項が高度場に与える影響を解明した。この結果では、AO が顕著に現れ た季節において、外力は高度場を減衰させる働きをしていることが示された。ま た、非線形相互作用が高度場と共鳴関係にあり、非線形相互作用の中でも線形プ ロセスがその共鳴関係の多くを占めていることが示された。下 (2010) では順圧大 気大循環モデルから作成した AOI 方程式により、AOI の変動に寄与する項を解析 した。これによると、線形項は AOI の変動に大きく寄与しており、外力項は AOI の変動に対し、負のフィードバックを持つことが示された。 その後、木野 (2012) ではクロススペクトル解析を用いて AOI 方程式各項の AO に対する寄与を求めた。 その結果、1 か月程度までの周期の AO では線形項、非線形項、外力項ともに AOI の変動の原因となっており、特に非線形項が大きく寄与していること、1 年程度の 周期では AOI 方程式の時間変化項に対して、線形項が共鳴、非線形項が原因、外 力項が減衰の意味をもつことが明らかとなった。

AOをもたらすメカニズムについてであるが、Kimoto et al. (2001) では線形化 した方程式系において特異値の最も小さい、減衰が最小のモードにおいて AO に似 た構造が得られることを示した。このモードを中立モードと呼び、Watanabe and Jin (2004) では波-波相互作用を含む行列に拡張して解析を行い、中立モードとし て AO に近い構造ベクトルが得られることを示した。中立モードは特別な外部強 制力によって卓越するモードであり、特異値分解の数学的構造から AO の構造の ベクトルと組で外部強制のベクトルが得られ、その外部強制力の構造を明らかに した。Tanaka and Matsueda (2005) は、順圧大気大循環モデルを冬季気候値を用 いて線形化し、固有値が0となる特異固有解において AO が現れ、任意の準定常 外力の応答として AO が励起されると提唱した。その後、関 (2012) では順圧大気 に埋め込まれた微小擾乱が外力に共鳴して AO を発達させるプロセスもあり得る ことを明らかにした。

AO が物理的な実体を持つかどうかについては未だに論争となっており、Itoh (2002) では、AO は統計的な虚像であり、北大西洋振動 (NAO: North Atlantic Oscillation)、太平洋・北米パターン (PNA: Pacific - North American Pattern) の合 成から説明できると主張した。この研究では、AO はほぼ見かけの現象であり、真 の AO があったとしてもその貢献はごくわずかであると結論付けている。

このように AO を励起するメカニズムについては様々な研究がなされているが、 未解明な部分が多い。特に 2009/10 年冬季は AOI が極端な負の値をとっており、 このような異常気象について、外力を解析することは重要である。

# 2 目的

本研究では2009/10年冬季のAOについて外力の分布を明らかにすること、また順圧大気大循環モデルを線形化した方程式系において定常状態を仮定し、順圧 高度、外力を与えたときの線形応答する気象要素の分布を解析することを目的と する。

# 3 使用データ

解析に使用するデータは、アメリカ環境予報センター (National Centers for Environmental Prediction; NCEP)/アメリカ大気研究センター (National Center for Atmospheric Research; NCAR) による再解析データ (Kalnay et al. 1996) である。 データの詳細は以下の通りである。

| 使用期間     | 1950年1月-2011年12月                               |
|----------|------------------------------------------------|
| 時間間隔     | 00, 06, 12, 18Z                                |
| 気象要素     | u(m/s), v(m/s), Z(gpm)                         |
| 水平グリッド間隔 | $2.5^{\circ} \times 2.5^{\circ}$               |
| 鉛直グリッド間隔 | 1000, 925, 850, 700, 600, 500, 400, 300, 200,  |
|          | 150, 100, 70, 50, 30, 20, 10 hPa <b>の</b> 17 層 |
| 解析範囲     | 北半球                                            |

再解析データとは、同一の数値予報モデルとデータ同化手法を用いて過去数十 年間にわたりデータ同化を行い、長期間にわたって出来る限り均質になるように 作成したデータセットのことである。このような均質な大気解析データセットは、 きわめて信頼度の高い基礎資料になりうる。特に気候変動の解明、大気大循環の 解析と全球のエネルギー循環の研究の際には有用である。

NCEP/NCAR では1949年1月から50年以上という長期にわたって同一のデー タ同化手法により再解析が行われており、このデータは解析に用いることが出来 る。ただし、1979年に初めて人工衛星 TIROS が打ち上げられ、客観解析に初め て衛星データが導入されたことにより、1979年を境にデータの不連続的な変動が 残っていることに留意しなくてはならない。モデルや解析スキーム等による見か けの気候変動は取り除かれているが、入力データの質の不連続は明瞭に残ってい る。また、2.5°×2.5°の等圧面データには、すべての変数に対してT30の波数切 断で平滑化施されているため、高緯度地方では波動状の誤差が顕著に現れる。し かし長周期の変動の研究では、長期間にわたる均質なデータである再解析データ は貴重である。

NCEP/NCAR 再解析データに用いられている予報モデルの水平分解能は T62、 鉛直分解能は 30 層、データ同化手法は 3 次元変分法で、その解析レベルはモデル 面である。ただし、先に述べたように等圧面データには平滑化のために T30 の波 数切断が行われている。

# 4 解析手法

本研究ではTanaka(1985) に基づきプリミティブ方程式を3次元ノーマルモード 展開したスペクトルプリミティブモデルを用いる。本章では、スペクトルプリミ ティブ方程式と線形応答に用いる線形マトリックスの導出について述べる。

## 4.1 基礎方程式

このモデルの基礎方程式系は、球面座標系 (緯度  $\theta$ 、経度  $\lambda$ 、気圧 p) で表された 水平方向の運動方程式、熱力学第一法則の式、質量保存則、状態方程式、静力学 平衡の式から表現される (小倉 1978)。

・水平方向の運動方程式

$$\frac{\partial u}{\partial t} - 2\Omega\sin\theta v + \frac{1}{a\cos\theta}\frac{\partial\phi}{\partial\lambda} = -\mathbf{V}\cdot\nabla u - \omega\frac{\partial u}{\partial p} + \frac{\tan\theta}{a}uv + F_u \qquad (1)$$

$$\frac{\partial v}{\partial t} + 2\Omega\sin\theta u + \frac{1}{a}\frac{\partial\phi}{\partial\theta} = -\mathbf{V}\cdot\nabla v - \omega\frac{\partial v}{\partial p} - \frac{\tan\theta}{a}uu + F_v \qquad (2)$$

・熱力学第一法則の式

$$\frac{\partial c_p T}{\partial t} + \mathbf{V} \cdot \nabla c_p T + \omega \frac{\partial c_p T}{\partial p} = \omega \alpha + Q \tag{3}$$

・質量保存則

$$\frac{1}{a\cos\theta}\frac{\partial u}{\partial\lambda} + \frac{1}{a\cos\theta}\frac{\partial v\cos\theta}{\partial\theta} + \frac{\partial\omega}{\partial p} = 0$$
(4)

・状態方程式

$$p\alpha = RT \tag{5}$$

・静力学平衡の式

$$\frac{\partial \phi}{\partial p} = -\alpha \tag{6}$$

これらの方程式で用いられている記号は以下の通りである。

| $\theta$  | : | 緯度       | $\alpha$ | : | 比容                                                           |
|-----------|---|----------|----------|---|--------------------------------------------------------------|
| $\lambda$ | : | 経度       | ω        | : | 鉛直 p 速度                                                      |
| u         | : | 東西方向の風速  | $F_u$    | : | 東西方向の摩擦                                                      |
| v         | : | 南北方向の風速  | $F_v$    | : | 南北方向の摩擦                                                      |
| V         | : | 水平方向の風速  | Q        | : | 非断熱加熱率                                                       |
| $\phi$    | : | ジオポテンシャル | $\Omega$ | : | 地球の自転角速度 $(7.29 \times 10^{-5} rad/s)$                       |
| p         | : | 気圧       | a        | : | 地球の半径 $(6.371 	imes 10^6 m)$                                 |
| t         | : | 時間       | $c_p$    | : | 定圧比熱 (1004JK <sup>-1</sup> kg <sup>-1</sup> )                |
| T         | : | 気温       | R        | : | 乾燥気体の気体定数 (287.04 <i>JK</i> <sup>-1</sup> kg <sup>-1</sup> ) |

そして上記の方程式の中で熱力学第一法則の式に質量保存則、状態方程式、静力学平衡の式を代入することで、これらの基礎方程式系を3つの従属変数  $(u, v, \phi)$ のそれぞれの予報方程式で表すことができる (Tanaka 1991)。 まず始めに気温 T と比容  $\alpha$ 、ジオポテンシャル  $\phi$  について以下のような摂動を与える。

$$T = T_0 + T' \tag{7}$$

$$\alpha = \alpha_0 + \alpha' \tag{8}$$

$$\phi = \phi_0 + \phi' \tag{9}$$

ここで  $T_0, \alpha_0, \phi_0$  はそれぞれ全球平均量であり、 $T', \alpha', \phi'$  は全球平均量からの偏差 である。(7) から (9) 式を状態方程式と静力学平衡の式に適用すると、

$$p\alpha_0 = RT_0 \tag{10}$$

$$p\alpha' = RT' \tag{11}$$

$$\frac{d\phi_0}{dp} = -\alpha_0 \tag{12}$$

$$\frac{\partial \phi'}{\partial p} = -\alpha' \tag{13}$$

これら(7)~(13)式を用いて熱力学第一法則の式を変形すると、

$$\frac{\partial T'}{\partial t} + \mathbf{V} \cdot \nabla T' + \omega \left( \frac{\partial T'}{\partial p} - \frac{RT'}{pc_p} \right) + \omega \left( \frac{dT_0}{dp} - \frac{RT_0}{pc_p} \right) = \frac{Q}{c_p}$$
(14)

となる。ここで  $T_0 \gg T'$  であるため、(14) 式の左辺の第3項において気温の摂動 の断熱変化項は無視することができる。つまり、

$$\omega \frac{RT_0}{pc_p} \gg \omega \frac{RT'}{pc_p} \tag{15}$$

である。また左辺の第4項において、全球平均気温 $T_0$ を用いることで以下のよう な大気の静的安定度パラメータ $\gamma$ を導入することができる (Tanaka 1985)。

$$\gamma = \frac{RT_0}{c_p} - p \frac{dT_0}{dp} \tag{16}$$

よってこの関係式を用いて(14)式を変形すると、

$$\frac{\partial}{\partial t} \left( -\frac{p^2}{\gamma R} \cdot \frac{\partial \phi'}{\partial p} \right) - \frac{p^2}{R\gamma} \mathbf{V} \cdot \frac{\partial \phi'}{\partial p} - \frac{\omega p}{\gamma} \frac{\partial}{\partial p} \left( \frac{p}{R} \frac{\partial \phi'}{\partial p} \right) - \omega = \frac{Qp}{c_p \gamma} \quad (17)$$

さらに (17) 式の両辺を p で微分し、質量保存則を適用すると、

$$\frac{\partial}{\partial t} \left( -\frac{\partial}{\partial p} \frac{p^2}{\gamma R} \cdot \frac{\partial \phi'}{\partial p} \right) + \frac{1}{a \cos \theta} \frac{\partial u}{\partial \lambda} + \frac{1}{a \cos \theta} \frac{\partial v \cos \theta}{\partial \theta}$$
$$= \frac{\partial}{\partial p} \left[ \frac{p^2}{\gamma R} \mathbf{V} \cdot \nabla \frac{\partial \phi'}{\partial p} + \frac{\omega p}{\gamma} \frac{\partial}{\partial p} \left( \frac{p}{R} \cdot \frac{\partial \phi'}{\partial p} \right) \right] + \frac{\partial}{\partial p} \left( \frac{Qp}{c_p \gamma} \right)$$
(18)

となる。以上より熱力学第一法則の式 (3) から気温 T と比容  $\alpha$  を消去し、摂動ジ オポテンシャル  $\phi'$  の予報方程式を導くことができた。これによって 3 つの従属変 数  $(u, v, \phi')$  に対して 3 つの予報方程式 (1)、(2)、(19) が存在するので解を一意的に 求めることができる。

これらの3つの式をまとめてベクトル表示すると次式のようになる (Tanaka 1991)。

$$\mathbf{M}\frac{\partial \mathbf{U}}{\partial \tau} + \mathbf{L}\mathbf{U} = \mathbf{N} + \mathbf{F}$$
(19)

 $\tau$ は無次元化された時間であり、 $\tau = 2\Omega t$ である。式 (19) の各記号は以下の通りである。

U:従属変数ベクトル

$$\mathbf{U} = (u, v, \phi')^T \tag{20}$$

M,L:線形演算子

$$\mathbf{M} = 2\Omega diag \left( 1, 1, -\frac{\partial}{\partial p} \frac{p^2}{R\gamma} \frac{\partial}{\partial p} \right)$$
(21)

$$\mathbf{L} = \begin{pmatrix} 0 & -2\Omega\sin\theta & \frac{1}{a\cos\theta}\frac{\partial}{\partial\lambda} \\ 2\Omega\sin\theta & 0 & \frac{1}{a}\frac{\partial}{\partial\theta} \\ \frac{1}{a\cos\theta}\frac{\partial}{\partial\lambda} & \frac{1}{a\cos\theta}\frac{\partial(\cos\theta}{\partial\theta} & 0 \end{pmatrix}$$
(22)

N:非線形項ベクトル

$$\mathbf{N} = \begin{pmatrix} -\mathbf{V} \cdot \nabla u - \omega \frac{\partial u}{\partial p} + \frac{\tan \theta}{a} uv \\ -\mathbf{V} \cdot \nabla v - \omega \frac{\partial v}{\partial p} - \frac{\tan \theta}{a} uu \\ \frac{\partial}{\partial p} \left[ \frac{p^2}{R\gamma} \mathbf{V} \cdot \nabla \frac{\partial \phi}{\partial p} + \omega p \frac{\partial}{\partial p} \left( \frac{p}{R\gamma} \frac{\partial \phi}{\partial p} \right) \right] \end{pmatrix}$$
(23)

F:外部強制項からなるベクトル

$$\mathbf{F} = \left(F_u, F_v, \frac{\partial}{\partial p} \left(\frac{pQ}{c_p \gamma}\right)\right)^T \tag{24}$$

ただし、

とする。

式 (19)の基礎方程式系の基本状態として、断熱かつ摩擦なし、つまり (F = 0)の静止大気 ( $\bar{u}, \bar{v}, \bar{\phi}$ ) = 0を考え、そこに微小擾乱 ( $u', v', \phi'$ )を与える。このとき式 (19)の非線形演算子 N は、

$$\mathbf{N} = \begin{pmatrix} -\left(\frac{u'}{a\cos\theta}\frac{\partial}{\partial\lambda} + \frac{v'}{a}\frac{\partial}{\partial\theta}\right)u' - \omega'\frac{\partial}{\partial p}u' + \frac{\tan\theta}{a}u'v' \\ -\left(\frac{u'}{a\cos\theta}\frac{\partial}{\partial\lambda} + \frac{v'}{a}\frac{\partial}{\partial\theta}\right)v' - \omega'\frac{\partial}{\partial p}v' - \frac{\tan\theta}{a}u'u' \\ \frac{\partial}{\partial p}\left[\frac{p^2}{R\gamma}\left(\frac{u'}{a\cos\theta}\frac{\partial}{\partial\lambda} + \frac{v'}{a}\frac{\partial}{\partial\theta}\right)\frac{\partial\phi'}{\partial p} + \omega'p\frac{\partial}{\partial p}\left(\frac{p}{R\gamma}\frac{\partial\phi'}{\partial p}\right)\right] \end{pmatrix}$$

2次以上の摂動項を無視すると、結局 N = 0となり、式 (19)を線形化した基本状態は以下のように表せる。

$$\mathbf{M} \frac{\partial \mathbf{U}'}{\partial \tau} + \mathbf{L} \mathbf{U}' = 0$$

$$\mathbf{U}' = (u', v', \phi')^T$$
(25)

これ以降は簡単のため、 $\mathbf{U}' = (u', v', \phi')^T$ を $\mathbf{U} = (u, v, \phi)^T$ と略記する。

## 4.2 スペクトルプリミティブ方程式の導出

#### 4.2.1 鉛直構造関数

このベクトル方程式 (25) において、鉛直構造関数 *G<sub>m</sub>(p)* を導入して鉛直方向と 水平方向に変数分離を行う。

$$\mathbf{U}(\lambda, \theta, p, \tau) = (u, v, \phi)^{T}$$

$$= \sum_{m=0}^{\infty} (u_{m}, v_{m}, \phi_{m})^{T} G_{m}(p)$$

$$= \sum_{m=0}^{\infty} U_{m}(\lambda, \theta, \tau) G_{m}(p)$$
(26)

ここで添字の*m*は鉛直モード番号 (vertical mode number) を意味する。これを式
 (27) に代入し、分離された各変数に関する方程式を導く。

$$\frac{d}{dp}\frac{p^2}{R\gamma}\frac{dG_m}{dp} + \frac{1}{gh_m}G_m = 0$$
(27)

$$\frac{1}{gh_m}\frac{\partial\phi_m}{\partial t} + \frac{1}{a\cos\theta}\frac{\partial u_m}{\partial\lambda} + \frac{1}{a\cos\theta}\frac{\partial v_m\cos\theta}{\partial\theta} = 0$$
(28)

常微分方程式 (27) を鉛直構造方程式 (vertical structure equation) と呼ぶ。また水 平風成分についても同様に鉛直構造関数を導入して、

$$\frac{\partial u_m}{\partial t} - 2\Omega \sin \theta v_m + \frac{1}{a \cos \theta} \frac{\partial \phi_m}{\partial \lambda} = 0$$
<sup>(29)</sup>

$$\frac{\partial v_m}{\partial t} + 2\Omega \sin \theta u_m + \frac{1}{a} \frac{\partial \phi_m}{\partial \theta} = 0$$
(30)

と導ける。式 (28)、(29)、(30)をまとめて水平構造方程式 (horizontal structure equation) と呼ぶ。ここで分離定数中の  $h_m$  は長さの次元 (L)をもち、鉛直構造方程式 (27)の固有関数である鉛直構造関数  $G_m(p)$  に対する固有値として求まる。また、 水平構造方程式 (28) は流体層の厚さ  $h_m$ の線形浅水方程式系と同じ形であること から、 $h_m$  は等価深度 (equivalent height)の意味を持つ。

鉛直構造関数  $G_m(p)$  の正規直交性により、気圧 p の任意の関数 f(p) について次の鉛直変換を導くことができる。

$$f(p) = \sum_{m=0}^{\infty} f_m G_m(p) \tag{31}$$

$$f_m = \frac{1}{p_s} \int_0^{p_s} f(p) G_m(p) dp$$
 (32)

ここで fm は第 m 鉛直モードの鉛直変換係数である。

鉛直モード m = 0 は順圧 (barotropic) モード、または外部 (external) モードと 言い、鉛直方向に節を持たずほとんど全層で一定のまま変化しないモードである。 これに対して鉛直モード  $m \ge 1$  は傾圧 (baroclinic) モード、または内部 (internal) モードと言い、m 番目のモードに関しては鉛直方向に m 個の節を持つ。本研究で 用いた順圧スペクトルモデルは、鉛直モード m = 0の順圧モードだけを考慮した モデルであり、鉛直方向に平均した大気の特性を考慮するのに適したモデルであ るといえる。また、順圧モード m = 0における等価深度  $h_0$  は 9728.4m である。

#### 4.2.2 水平構造関数

前節において第*m* 鉛直モードの鉛直構造関数の固有値として得た等価深度を用いて、水平構造方程式 (28)、(29)、(30) を解く。ここで式 (28)、(29)、(30) を

$$\mathbf{M}_m \frac{\partial}{\partial \tau} \mathbf{U}_m + \mathbf{L} \mathbf{U}_m = 0 \tag{33}$$

と行列表記する。添字の m は第 m 鉛直モードを意味する。ただし

$$\mathbf{M}_{m} = 2\Omega diag\left(1, 1, \frac{1}{gh_{m}}\right)$$
$$\mathbf{U}_{m} = (u_{m}, v_{m}, \phi_{m})^{T}$$

である。ここで次のスケール行列 $\mathbf{X}_m$ 、 $\mathbf{Y}_m$ を導入する。

$$\mathbf{X}_m = diag\left(\sqrt{gh_m}, \sqrt{gh_m}, gh_m\right) \tag{34}$$

$$\mathbf{Y}_m = 2\Omega diag\left(\sqrt{gh_m}, \sqrt{gh_m}, 1\right) \tag{35}$$

これらを式(33)に以下のように作用させる。

$$\left(\mathbf{Y}_{m}^{-1}\mathbf{M}_{m}\mathbf{X}_{m}\right)\frac{\partial}{\partial\tau}\left(\mathbf{X}_{m}^{-1}\mathbf{U}_{m}\right)+\left(\mathbf{Y}_{m}^{-1}\mathbf{L}\mathbf{X}_{m}\right)\left(\mathbf{X}_{m}^{-1}\mathbf{U}_{m}\right)=0$$
(36)

ここで、

$$\mathbf{Y}_m^{-1}\mathbf{M}_m\mathbf{X}_m = diag\left(1, 1, 1\right) \tag{37}$$

であるから式 (36) は

$$\frac{\partial}{\partial \tau} \left( \mathbf{X}_m^{-1} \mathbf{U}_m \right) + \left( \mathbf{Y}_m^{-1} \mathbf{L} \mathbf{X}_m \right) \left( \mathbf{X}_m^{-1} \mathbf{U}_m \right) = 0$$
(38)

と書ける。尚、

$$\mathbf{L}_{m} = \mathbf{Y}_{m}^{-1} \mathbf{L} \mathbf{X}_{m} = \begin{pmatrix} 0 & -\sin\theta & \frac{\alpha_{m}}{\cos\theta} \frac{\partial}{\partial\lambda} \\ \sin\theta & 0 & \alpha_{m} \frac{\partial}{\partial\theta} \\ \frac{\alpha_{m}}{\cos\theta} \frac{\partial}{\partial\lambda} & \frac{\alpha_{m}}{\cos\theta} \frac{\partial()\cos\theta}{\partial\theta} & 0 \end{pmatrix}$$
(39)

である。式 (39) 中の  $\alpha_m$  は次のように定義した笠原パラメータと呼ばれるもので ある。

$$\alpha_m = \frac{\sqrt{gh_m}}{2\Omega a} \tag{40}$$

このことは、浅水方程式中の4つの惑星パラメータ(g: 重力、 $h_m$ : 等価深度、 $\Omega$ : 地 球の自転速度、a: 惑星半径)が唯一の惑星固有パラメータ $\alpha_m$  だけであらわせるこ とを示している (Tanaka 1985)。

式 (38) は時間 7 の線形システムであるから次のように解を仮定して、水平方向 成分と時間成分とに変数分離することができる。

$$\mathbf{X}_{m}^{-1}\mathbf{U}_{m}\left(\lambda,\theta,\tau\right) = \sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} w_{nlm} \mathbf{H}_{nlm}\left(\lambda,\theta\right) e^{-i\sigma_{nlm}\tau}$$
(41)

 $\mathbf{H}_{nlm}(\lambda,\theta)$  は水平構造関数 (horizontal structure function)、または Hough 関数と 呼ばれる。Hough 関数は第 m 鉛直モードに相当する水平ノーマルモード、すなわ ち水平自由振動を意味し、経度  $\lambda$  と緯度  $\theta$  の関数である。添字の n は東西波数、lは南北モード番号を示している。

式(41)を水平構造方程式(38)に代入すると、

$$-i\sigma_{nlm}\mathbf{H}_{nlm} + \mathbf{L}_m\mathbf{H}_{nlm} = 0 \tag{42}$$

となる。この固有値問題を解くことで固有関数  $\mathbf{H}_{nlm}(\lambda,\theta)$  と対応する固有値  $\sigma_{nlm}$  を求めることが出来る。式 (39) は経度方向にパラメータが一定であるから、Hough ベクトル関数  $\Theta_{nlm}(\theta)$  を用いて  $\mathbf{H}_{nlm}(\lambda,\theta)$  を次のように経度依存と緯度依存とに 変数分離できる。

$$\mathbf{H}_{nlm}\left(\lambda,\theta\right) = \mathbf{\Theta}_{nlm}\left(\theta\right)e^{in\lambda} \tag{43}$$

ただし、

$$\boldsymbol{\Theta}_{nlm}\left(\boldsymbol{\theta}\right) = \begin{pmatrix} U_{nlm}\left(\boldsymbol{\theta}\right) \\ -iV_{nlm}\left(\boldsymbol{\theta}\right) \\ Z_{nlm}\left(\boldsymbol{\theta}\right) \end{pmatrix}$$
(44)

とする。南北風成分に関しては位相を  $\pi/2$  だけずらすために  $i = \sqrt{-1}$  が掛けられ ている。南北モードは 3 種類の異なるモードから構成される。一つは低周波の西 進するロスビーモード (Rossby mode)  $l_r$  で、残りの二つは高周波の西進、および 東進する重力波モード (gravity mode)  $l_{wg}$ 、 $l_{eg}$  である。

Swartrauber and Kasahara (1985) によると、水平構造関数  $\mathbf{H}_{nlm}(\lambda, \theta)$  は球面調 和関数展開の和として得られる。この方法で求められる水平構造関数  $\mathbf{H}_{nlm}(\lambda, \theta)$ が正規直交性をもつならば、これを基底にして波数展開することが出来る。水平 構造関数が直交関数であることは以下のように示される。

緯度と経度に関する内積は以下のように表される。

$$\langle \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle = \frac{1}{4\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} \left( U_{nlm} U_{n'l'm}^* + V_{nlm} V_{n'l'm}^* + Z_{nlm} Z_{n'l'm}^* \right) \\ e^{-i(n-n')\lambda} \cos\theta d\lambda d\theta \qquad (45)$$

アスタリスクは複素共役を意味し、 $nlm \ge n'l'm$  は東西波数と南北モード番号の 異なるモードを示している。式 (39)の線形演算子  $\mathbf{L}_m = \mathbf{Y}_m^{-1} \mathbf{L} \mathbf{X}_m$  は非対称のエル ミート行列であるため、次の関係 (skew-self adjoint) が成立する。

$$\langle \mathbf{H}_{nlm}, \mathbf{L}_m \mathbf{H}_{n'l'm} \rangle + \langle \mathbf{L}_m \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle = 0$$
 (46)

式(46)に式(42)を代入して、

$$(\sigma_{nlm} - \sigma^*_{n'l'm}) \langle \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle = 0$$
(47)

を得る。ただしn = 0を除く。式 (47)から以下の二つの条件が課せられる。 • n = n'かつl = l'のとき

 $\langle \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle$ は線形浅水方程式系の全エネルギー量に比例する量であり、決して0にはならない。よって式 (47) を満たすためには  $\sigma_{nlm} = \sigma_{nlm}^*$  である必要があり、従って  $\sigma_{nlm}$  は実数でなくてはならない。

#### それ以外のとき

 $\sigma_{nlm} \neq \sigma^*_{nlm}$ であれば式 (47)を満たすためには  $\langle \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle = 0$ が成り立つ 必要がある。すなわち固有振動数  $\sigma_{nlm}$ に相当する固有関数  $\mathbf{H}_{nlm}$ が、固有振動数  $\sigma_{n'l'm}$ に相当する固有関数  $\mathbf{H}_{n'l'm}$ と直交関係にあることを示している。

以上の二つの条件から、任意のモード *nlm* について、以下の正規直交関係が成 立する。

$$\langle \mathbf{H}_{nlm}, \mathbf{H}_{n'l'm} \rangle = \frac{1}{4\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} \mathbf{H}_{nlm} \cdot \mathbf{H}_{n'l'm}^* \cos\theta d\lambda d\theta = \delta_{nn'} \delta_{ll'}$$
(48)

以上の水平構造関数  $\mathbf{H}_{nlm}(\lambda, \theta)$  の直交性から、次のフーリエハフ変換が導かれる。

第m 鉛直モードに相当する物理空間において、 $\lambda$ ,  $\theta$ ,  $\tau$  を変数とする任意のベクトル関数を  $\mathbf{A}_m(\lambda, \theta, \tau)$  とすると、

$$\mathbf{A}_{m}(\lambda,\theta,\tau) = \sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} a_{nlm}(\tau) \mathbf{H}_{nlm}(\lambda,\theta)$$
(49)

$$a_{nlm}(\tau) = \frac{1}{4\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} \mathbf{A}_{m}(\lambda,\theta,\tau) \cdot \mathbf{H}_{nlm}^{*} \cos\theta d\lambda d\theta$$
(50)

となる。

#### 4.2.3 3次元ノーマルモード関数展開

鉛直構造関数と水平構造関数を結合させ、3次元ノーマルモード関数  $\Pi_{nlm}(\lambda, \theta, p)$ を構成し、式 (19) を展開する。3 次元ノーマルモード関数  $\Pi_{nlm}(\lambda, \theta, p)$  は鉛直構 造関数  $G_m(p)$  と水平構造関数  $\mathbf{H}_{nlm}(\lambda, \theta)$  とのテンソル積であり、以下のように定 義される。

$$\Pi_{nlm}(\lambda, \ \theta, \ p) = G_m(p)\mathbf{H}_{nlm}(\lambda, \ \theta)$$
$$= G_m(p)\Theta_{nlm}(\theta) e^{in\lambda}$$
(51)

この3次元ノーマルモード関数も以下に示す内積の下で、直交関係を満たす。

$$\langle \mathbf{\Pi}_{nlm}, \mathbf{\Pi}_{n'l'm} \rangle = \frac{1}{4\pi p_s} \int_0^{p_s} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\pi} \mathbf{\Pi}_{nlm} \cdot \mathbf{\Pi}_{n'l'm}^* \cos\theta d\lambda d\theta dp$$

$$= \delta_{nn'} \delta_{ll'} \delta_{mm'}$$
(52)

この関係により、3次元ノーマルモード関数展開が導かれる。式(19)中のUとN とFは3次元ノーマルモード関数によって次のように展開される。

$$\mathbf{U}(\lambda,\theta,p,\tau) = \sum_{n=-N}^{N} \sum_{l=0}^{L} \sum_{m=0}^{M} w_{nlm}(\tau) \mathbf{X}_{m} \mathbf{\Pi}_{nlm}(\lambda,\theta,p)$$
(53)

$$\mathbf{N}(\lambda,\theta,p,\tau) = \sum_{n=-N}^{N} \sum_{l=0}^{L} \sum_{m=0}^{M} n_{nlm}(\tau) \mathbf{Y}_m \mathbf{\Pi}_{nlm}(\lambda,\theta,p)$$
(54)

$$\mathbf{F}(\lambda,\theta,p,\tau) = \sum_{n=-N}^{N} \sum_{l=0}^{L} \sum_{m=0}^{M} f_{nlm}(\tau) \mathbf{Y}_{m} \mathbf{\Pi}_{nlm}(\lambda,\theta,p)$$
(55)

ここで  $w_{nlm}(\tau), n_{nlm}(\tau), f_{nlm}(\tau)$  はそれぞれ、従属変数ベクトル U、非線形項 ベクトル N、外部強制ベクトル F についての展開係数である。 $w_{nlm}(\tau), n_{nlm}(\tau), f_{nlm}(\tau)$ は展開基底の正規直交性式 (52) より、以下のフーリエ変換で求められる。

$$w_{nlm}(\tau) = \langle U(\lambda, \theta, p, t), \mathbf{X}_m^{-1} \mathbf{\Pi}_{nlm}(\lambda, \theta, p) \rangle$$
(56)

$$n_{nlm}(\tau) = \langle N(\lambda, \,\theta, \,p, \,t), \, \mathbf{Y}_m^{-1} \mathbf{\Pi}_{nlm}(\lambda, \,\theta, \,p) \rangle$$
(57)

$$f_{nlm}(\tau) = \langle F(\lambda, \theta, p, t), \mathbf{Y}_m^{-1} \mathbf{\Pi}_{nlm}(\lambda, \theta, p) \rangle$$
(58)

同様の内積を式 (19) 全体に施すことによって、プリミティブ方程式系の 3 次元 スペクトルモデルが導かれる。

$$\left\langle \mathbf{M} \frac{\partial}{\partial \tau} \mathbf{U} + \mathbf{L} \mathbf{U} - \mathbf{N} - \mathbf{F}, \ \mathbf{Y}_m^{-1} \mathbf{\Pi}_{nlm} \right\rangle = 0$$
 (59)

この式を、次のように線形項、非線形項、外力項に分ける。

$$\left\langle \mathbf{M}\frac{\partial}{\partial\tau}\mathbf{U} + \mathbf{L}\mathbf{U} \right\rangle = \left\langle \mathbf{N}, \mathbf{Y}_m^{-1}\mathbf{\Pi}_{nlm} \right\rangle + \left\langle \mathbf{F}, \mathbf{Y}_m^{-1}\mathbf{\Pi}_{nlm} \right\rangle$$
(60)

まず、線形項を 3 次元スペクトルモデルに書き換える。鉛直微分オペレータで ある線形演算子 M は、鉛直構造方程式 (27) により固有値に置き換えることができ る。添字の *i*, *j* は東西、南北、鉛直波数の添字 *nlm* を簡略化したものである。

$$\mathbf{M}\mathbf{\Pi}_{i} = diag\left(1, 1, \frac{1}{gh_{m}i}\right)\mathbf{\Pi}_{i}$$
(61)

無次元化した水平微分行列  $\mathbf{L}_m$ の固有値が $i_i$ となる (42) より、以下の関係を満たす。

$$(\mathbf{Y}_m^{-1}\mathbf{L}\mathbf{X}_i)\mathbf{\Pi}_i = i \quad _i\mathbf{\Pi}_i \tag{62}$$

この式とUをノーマルモードで展開する (58) を (59) に代入し無次元化し、L<sub>m</sub>の 直交を用い、(61)を用いれば

$$\sum_{j} \left\langle 2\Omega \mathbf{Y}_{i}^{-1} \mathbf{M} \mathbf{X}_{j} \mathbf{\Pi}_{j}, \mathbf{\Pi}_{i} \right\rangle \frac{dw_{j}}{d\tau} + \left\langle \mathbf{Y}_{i}^{-1} \mathbf{L} \mathbf{X}_{j} \mathbf{\Pi}_{j}, \mathbf{\Pi}_{i} \right\rangle w_{j} = \frac{dw_{i}}{d\tau} + i\sigma_{i} w_{i} \qquad (63)$$

となり線形項が導かれる。

次に非線形項を3次元スペクトルモデルに書き換える。ここからは3重の添字 nlm, n'l'm', n''l''m''をそれぞれi, j, kと表し、iで示される波数はそれぞれ $n_i, k_i, m_i$ のように示して区別する。j, kについても同様である。

$$\langle \boldsymbol{N}, \boldsymbol{Y}_{m_{i}}^{-1} \boldsymbol{\Pi}_{i} \rangle = \frac{1}{2\pi p_{s}} \int_{0}^{p_{s}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} G_{m_{i}} e^{in\lambda} \\ \begin{pmatrix} \frac{1}{2\Omega\sqrt{gh_{m}}} U_{i} \\ \frac{1}{2\Omega\sqrt{gh_{m}}} (iV_{i}) \\ \frac{1}{2\Omega}Z_{i} \end{pmatrix}^{T} \begin{pmatrix} -\boldsymbol{V} \cdot \nabla \boldsymbol{u} - \omega \frac{\partial \boldsymbol{u}}{\partial p} + \frac{\tan\theta}{a} \boldsymbol{u}\boldsymbol{v} \\ -\boldsymbol{V} \cdot \nabla \boldsymbol{v} - \omega \frac{\partial \boldsymbol{v}}{\partial p} - \frac{\tan\theta}{a} \boldsymbol{u}\boldsymbol{u} \\ \frac{\partial}{\partial p} \left( \frac{p^{2}}{R\gamma} \boldsymbol{V} \cdot \nabla \frac{\partial \phi}{\partial p} + \frac{\omega p}{\gamma} \frac{\partial \phi}{\partial p} \left( \frac{p}{R} \frac{\partial \phi}{\partial p} \right) \right) \end{pmatrix} \cos\theta d\lambda d\theta dp$$

$$(64)$$

(58) を成分で書くと以下のようになる。

$$u = \sum_{i=0}^{K} w_i \sqrt{gh_{m_i}} U_i G_{m_i} e^{in_i \lambda}$$

$$v = \sum_{i=0}^{K} w_i \sqrt{gh_{m_i}} (-iV_i) G_{m_i} e^{in_i \lambda}$$

$$\phi = \sum_{i=0}^{K} w_i gh_{m_i} Z_i G_{m_i} e^{in_i \lambda}$$
(65)

この級数展開の式(58)を式(64)の各変数に代入する。

また、鉛直 p 速度  $\omega$  は発散と関係することから、以下のように  $\sigma_i Z_i$  を用いた級 数展開を導くことができる (田中 他, 1997)。まず質量保存則 (4) を鉛直積分して式 (58) を代入する。

$$\omega = -\int_{0}^{p} \nabla \cdot \mathbf{V} dp 
= -\int_{0}^{p} \left( \frac{1}{a \cos \theta} \frac{\partial u}{\partial \lambda} + \frac{1}{a \cos \theta} \frac{\partial v \cos \theta}{\partial \theta} \right) dp 
= -\sum_{i=0}^{K} w_{i} \int_{0}^{p} G_{m_{i}} dp \frac{\sqrt{gh_{m_{i}}}}{a \cos \theta} \left[ \frac{\partial}{\partial \lambda} U_{i} e^{in_{i}\lambda} + \frac{\partial}{\partial \theta} (-iV_{i} \cos \theta) e^{in_{i}\lambda} \right]$$
(66)

ここで、水平構造方程式より、

$$i\sigma_i \frac{2\Omega}{\sqrt{gh_m}} Z_i e^{in_i\lambda} = \frac{1}{a\cos\theta} \left[ \frac{\partial}{\partial\lambda} U_i e^{in_i\lambda} + \frac{\partial}{\partial\theta} (-iV_i\cos\theta e^{in_i\lambda} \right]$$
(67)

であるから、これを式(66)代入して、

$$\omega = \sum_{i=0}^{K} w_i 2\Omega \int_0^p G_{m_i} dp (-i\sigma_i Z_i) e^{in_i \lambda}$$
(68)

を得る。式 (68) 中の  $G_{m_i}$ の不定積分は鉛直構造方程式を積分することによって  $G_{m_i}$ の 1 階微分で表すことができる。

$$\int_0^p G_{m_i} dp = -\frac{gh_{m_i}}{R\gamma} p^2 \frac{dG_{m_i}}{dp}$$
(69)

以上の式(66)と式(67)を式(65)に代入することで次式のような式に変形することができる。

$$\langle \boldsymbol{N}, \boldsymbol{Y}_{m_{i}}^{-1} \boldsymbol{\Pi}_{i} \rangle = -i \sum_{j=1}^{N} \sum_{k=1}^{N} w_{j} w_{k} \frac{1}{2\pi p_{s}} \int_{0}^{p_{s}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} \left( \begin{matrix} U_{i} \\ V_{i} \\ V_{i} \\ Z_{i} \end{matrix} \right)^{T} \begin{pmatrix} P_{1} \left( \frac{n_{k} U_{k}}{\cos \theta} + \tan \theta V_{k} \right) & -P_{1} \frac{dU_{k}}{d\theta} & P_{2} U_{k} \\ P_{1} \left( \frac{n_{k} V_{k}}{\cos \theta} + \tan \theta U_{k} \right) & -P_{1} \frac{dV_{k}}{d\theta} & P_{2} V_{k} \\ P_{3} \frac{n_{k} Z_{k}}{\cos \theta} & -P_{3} \frac{dZ_{k}}{d\theta} & -P_{4} Z_{k} \end{pmatrix}$$
$$\begin{pmatrix} U_{j} \\ V_{j} \\ \sigma_{j} Z_{j} \end{pmatrix} e^{i(-n_{i}+n_{j}+n_{k})\lambda} \cos \theta d\lambda d\theta dp \tag{70}$$

ただし、

$$P_{1} = \frac{\sqrt{gh_{m_{j}}}\sqrt{gh_{m_{k}}}}{2\Omega a\sqrt{gh_{m_{i}}}}G_{m_{i}}G_{m_{j}}G_{m_{k}}$$

$$P_{2} = \frac{\sqrt{gh_{m_{k}}}gh_{m_{j}}}{\sqrt{gh_{m_{i}}}R\gamma}p^{2}G_{m_{i}}\frac{dG_{m_{j}}}{dp}\frac{dG_{m_{k}}}{dp}$$

$$P_{3} = \frac{\sqrt{gh_{m_{j}}}}{2\Omega}G_{m_{i}}G_{m_{j}}G_{m_{k}} - \frac{\sqrt{gh_{m_{k}}}gh_{m_{j}}}{2\Omega aR\gamma}p^{2}G_{m_{i}}\frac{dG_{m_{j}}}{dp}\frac{dG_{m_{k}}}{dp}$$

$$P_{4} = G_{m_{i}}G_{m_{j}}G_{m_{k}} + \frac{gh_{m_{k}}}{R\gamma}pG_{m_{i}}G_{m_{j}}\frac{dG_{m_{k}}}{dp} + \frac{gh_{m_{j}}}{R\gamma}pG_{m_{i}}\frac{dG_{m_{j}}}{dp}G_{m_{k}}$$

$$+ \left(\frac{gh_{m_{k}}}{R\gamma} - 1\right)\frac{gh_{m_{j}}}{R\gamma}p^{2}G_{m_{i}}\frac{dG_{m_{j}}}{dp}\frac{dG_{m_{k}}}{dp}$$

$$(71)$$

とする。

式 (53)、(54)、(55) で展開した大気変数を式 (58) の各項に代入し、内積の積分 計算を実行すると、空間依存は消えて時間のみの関数となり、最終的に行列表記 のプリミティブ方程式は以下のようなスペクトル表記のプリミティブ方程式系に 書き直すことが出来る。

$$\frac{dw_i}{d\tau} + i\sigma_i w_i = -i \sum_{j=1}^K \sum_{k=1}^K r_{ijk} w_j w_k + f_i$$
(72)  
$$i = 1, 2, \cdots, K$$

ここで、 $\tau$ は無次元時間、 $\sigma_i$ はラプラス潮汐方程式の固有振動数、 $r_{ijk}$ は非線形相 互作用係数で実数となる。非線形項中の $r_{ijk}$ は非線形の波–波相互作用 (wave–wave interaction) および帯状–波相互作用 (zonal–wave interaction) に関する相互作用 係数 (interaction coefficients) で実数である。Kは全波数で、K = (2N+1)(L+1)(M+1)である。Nは東西全波数、Lは南北全波数、Mは鉛直全波数を示す。厳 密には $K \rightarrow \infty$ としなくてはならないが、通常はある波数で切断して方程式系を 構成する。

以上より、順圧成分と傾圧成分からなる鉛直構造関数、ロスビーモードと重力 波モードからなる水平構造関数の両方を用いることで、プリミティブ方程式系を スペクトル表示で表すことができた。

鉛直モード m = 0 だけで方程式系 (59) を閉じると、

$$\left\langle \mathbf{M} \frac{\partial}{\partial \tau} \mathbf{U} + \mathbf{L} \mathbf{U} - \mathbf{N} - \mathbf{F}, \ \mathbf{Y}_0^{-1} \mathbf{\Pi}_{nl0} \right\rangle = 0$$
 (73)

であり、これをスペクトル表記すると、

$$\frac{dw_i}{d\tau} + i\sigma_i w_i = -i \sum_{j=1}^K \sum_{k=1}^K r_{ijk} w_j w_k + s_i$$
(74)  
$$i = 1, 2, 3, \cdots, K$$

となる。ここで、Kは式 (72)のKとは異なり、順圧スペクトルモデルにおける全 波数を意味し、K = (2N+1)(L+1)である.最後に、順圧成分のプリミティブ方 程式 (73)を成分表記すると、

$$\frac{\partial u}{\partial t} - 2\Omega\sin\theta v + \frac{1}{a\cos\theta}\frac{\partial\phi}{\partial\lambda} = -\mathbf{V}\cdot\nabla u + \frac{\tan\theta}{a}uv + F_x \tag{75}$$

$$\frac{\partial v}{\partial t} + 2\Omega\sin\theta u + \frac{1}{a}\frac{\partial\phi}{\partial\theta} = -\mathbf{V}\cdot\nabla v - \frac{\tan\theta}{a}uu + F_y \tag{76}$$

$$\frac{\partial \phi}{\partial t} + gh_0 \nabla \cdot \mathbf{V} = -\mathbf{V} \cdot \nabla \phi + F_z \tag{77}$$

と表される。

# 4.3 外力の算出

本研究ではスペクトルプリミティブ方程式を東西波数は $n = 0, 1, \dots, 20$ で、南 北モードはロスビーモード $l_r = 0, 1, \dots, 20$ の赤道対称モード(奇数モード)で波数 切断している。鉛直波数m = 0のみで方程式系を閉じ、外力は時間変化項、線形 項、非線形項の残差として算出する。

## 4.4 AOI 方程式

1950年から 2010年までの順圧大気場に対して EOF 解析を行い、その結果得られた EOF-1を本研究で用いる AO の構造ベクトル  $(w_{AO})$ とする。この AO の構造 ベクトルと時々刻々と変化する順圧大気場との内積を計算することで、AOI の時 系列  $(AOI = (w_i \cdot w_{AO}))$ を得ることができる。

続いて AOI 方程式を導出する。まず、スペクトルプリミティブ方程式の各項を 展開係数を気候値と気候値からの偏差に分けると以下のように表せる。

$$\frac{d(\overline{w}_i + w'_i)}{d\tau} = -i\sigma_i \overline{w}_i - i\sigma_i w'_i - i\sum_{j=1}^K \sum_{k=1}^K r_{ijk} \overline{w}_j \overline{w}_k$$
$$-i\sum_{j=1}^K \sum_{k=1}^K r_{ijk} (\overline{w}_j w'_k + \overline{w}_k w'_j) - i\sum_{j=1}^K \sum_{k=1}^K r_{ijk} w'_j w'_k + \overline{s}_i + s'_i (78)$$

ここでバーは基本場、ダッシュは基本場からの偏差を表す。 さらに式 (78)を平均すると以下の式となる。

$$0 = -i\sigma_i\overline{w}_i - i\sum_{j=1}^K\sum_{k=1}^K r_{ijk}\overline{w}_j\overline{w}_k - i\sum_{j=1}^K\sum_{k=1}^K r_{ijk}\overline{w'_jw'_k} + \overline{s}_i$$
(79)

式(78)と式(79)から、

$$\frac{dw'_{i}}{d\tau} = -i\sigma_{i}w'_{i} - i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}(\overline{w}_{j}w'_{k} + \overline{w}_{k}w'_{j}) 
+ i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}\overline{w'_{j}w'_{k}} - i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}w'_{j}w'_{k} + s'_{i}$$
(80)

となる。

式 (80) と、AO として得られる EOF1 ベクトルとの内積を施すことで AOI の時間 変化を計算すると代数方程式にすることができ、以下のように表す。

$$\frac{d(w'_{i} \cdot w_{AO})}{d\tau} = \left\langle -i\sigma w'_{i} - i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}(\overline{w}_{j}w'_{k} + \overline{w}_{k}w'_{j})\right\rangle \cdot w_{AO} + \left\langle i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}\overline{w'_{j}w'_{k}} - i\sum_{j=1}^{K}\sum_{k=1}^{K}r_{ijk}w'_{j}w'_{k}\right\rangle \cdot w_{AO} + s'_{i} \cdot w_{AO}$$
(81)

ここで、左辺は AOI の時間変化項となり、右辺第一項は線形項、第二項は非線形項、第三項は外力項となる。このようにしてモデル各項による AOI への寄与を定

量的に示す AOI 方程式を構築することができる。ただし、特異固有解理論により 外力項の中の粘性項は線形項に含め解析した。線形項第一項は中立波であり、エ ネルギーが一定で増幅も減衰もしない自由振動の波である。線形項第二項は気候 値と擾乱との相互作用を表す。非線形項第一項は非定常擾乱との相互作用の平均 で定数項であり、非線形項第二項は非定常擾乱との相互作用を表す。

## 4.5 線形定常応答

スペクトルプリミティブ方程式 (74) を摂動法により AOI 方程式の際と同様に基本場とそこからの偏差に分けて線形化すると、

$$\frac{dw_i}{d\tau} + i\sigma_i w_i = -i\sum_{j=1}^K \left(\sum_{k=1}^K \left(r_{ijk} + r_{ikj}\right)\overline{w}_k\right) w_j + s_i \tag{82}$$

となる (簡単のため、擾乱項のダッシュは削除している)。負の東西波数成分は正の東西波数成分の複素共役として得られることから、式 (82) は東西波数  $n \ge 0$  について行列の形でまとめることができる。

$$\frac{d\mathbf{w}}{d\tau} + i\mathbf{D}\mathbf{w} = -i\mathbf{B}\mathbf{w} - i\mathbf{C}\mathbf{w}^* + \mathbf{f}$$
(83)

このとき、

$$\mathbf{w} = (w_1, \cdots, w_i, \cdots, w_K)^T, \text{ for } n_i \ge 0$$
(84)

$$\mathbf{f} = (f_1, \cdots, f_i, \cdots, f_K)^T, \text{ for } n_i \ge 0$$
(85)

$$\mathbf{D} = diag\left(\sigma_{1}, \cdots, \sigma_{i}, \cdots \sigma_{K}\right)$$
(86)

$$\mathbf{B} = \sum_{j=1}^{K} \left( \sum_{k=1}^{K} \left( r_{ijk} + r_{ikj} \right) \overline{w}_k \right) w_j, \text{ for } n_j \ge 0$$
(87)

$$\mathbf{C} = \sum_{j=1}^{K} \left( \sum_{k=1}^{K} \left( r_{ijk} + r_{ikj} \right) \overline{w}_k \right) w_j, \text{ for } n_j < 0$$
(88)

である。この方程式において外力を0とし、解を波動解で与える。B、C は複素数 であるから w は実数部分  $w_R$  と虚数部分  $w_I$  に分かれる。

$$\begin{bmatrix} \mathbf{w}_{\mathbf{R}} \\ \mathbf{w}_{\mathbf{I}} \end{bmatrix} (\tau) = \begin{bmatrix} \xi \\ \zeta \end{bmatrix} exp(\nu\tau)$$
(89)

*ξとζ*は波動解の構造ベクトルであり、*ν*は振動数である。これを式 (83) に代入すると、以下の固有値問題として捉えることが出来る。

$$\nu \begin{bmatrix} \xi \\ \zeta \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{\mathbf{I}} + \mathbf{C}_{\mathbf{I}} & \mathbf{B}_{\mathbf{R}} - \mathbf{C}_{\mathbf{R}} + \mathbf{D} \\ -\mathbf{B}_{\mathbf{R}} - \mathbf{C}_{\mathbf{R}} - \mathbf{D} & \mathbf{B}_{\mathbf{I}} - \mathbf{C}_{\mathbf{I}} \end{bmatrix} \begin{bmatrix} \xi \\ \zeta \end{bmatrix}$$
(90)

ここで行列 A を、

$$\mathbf{A} = \begin{bmatrix} \mathbf{B}_{\mathbf{I}} + \mathbf{C}_{\mathbf{I}} & \mathbf{B}_{\mathbf{R}} - \mathbf{C}_{\mathbf{R}} + \mathbf{D} \\ -\mathbf{B}_{\mathbf{R}} - \mathbf{C}_{\mathbf{R}} - \mathbf{D} & \mathbf{B}_{\mathbf{I}} - \mathbf{C}_{\mathbf{I}} \end{bmatrix}$$
(91)

とおく。すると、式(83)はこの行列Aを用いて、

$$\frac{d\mathbf{x}}{d\tau} = \mathbf{A}\mathbf{x} + \mathbf{y} \tag{92}$$

と表すことができる。この方程式において定常状態を仮定して時間変化項を0と おくと、

$$\mathbf{y} = -\mathbf{A}\mathbf{x} \tag{93}$$

となり、定常応答としての外力を求めることができる。また、

$$\mathbf{x} = -\mathbf{A}^{-1}\mathbf{y} \tag{94}$$

とすれば、外力の定常応答としての順圧高度が求まる。本研究の定常応答においては、粘性項を線形マトリックスから除外して計算している。Aの詳細な構造は図2に示す。この構造の通り行列Aは逆行列を持たないが、東西波数0の虚部に対応する成分を除いて逆行列を求め、その後に波数0の成分を0として付け加えることで行列を作成し、それを便宜的にA<sup>-1</sup>としている。

# 5 結果

## 5.1 北極振動の正負における順圧高度と外力の構造

本節では、1950-2011年のデータ期間の中から北極振動が大きく正や負に振れた 期間について、順圧高度と外力の空間構造の特徴を説明する。取り上げる期間は、 北極振動プラスの事例として1975/76年 DJF、1988/89年 DJF、北極振動マイナ スの事例として1976/77年 DJF、2009/10年 DJF である。

図3~図6は1975/76年、1976/77年、1988/89年、2009/10年DJFにおける北半 球の順圧高度(上)と外力(下)である。実線のコンターが正の値、破線のコンター が負の値を示している。順圧高度のコンター間隔は20mであり、外力のコンター 間隔は50×10<sup>-6</sup>m/sである。図3、図5の順圧高度は北極域で負、それを取り囲 むように中緯度地域で正の値となっており、北極振動プラスの構造が現れている。 一方、外力は北極域で正、中緯度地域で負の値となっている。図4、図6の順圧高 度は北極域で正、中緯度地域で負の値となっており、北極振動マイナスの構造と なっている。外力は北極域で負、中緯度地域で正の値となっている。これらの期 間をまとめると、順圧高度と外力が正反対の構造となっていることが分かる。

### 5.2 順圧高度の EOF 解析

図7はNCEP/NCARのデータを用いた1950-2011年の順圧高度のEOF-1を示 している。第1モードの固有ベクトル(上)とそのスコア時系列(下)になっている。 スコア時系列に関しては、365日の移動平均をかけており、縦軸のスコアは正規化 した値である。第1モードの固有ベクトルは北極振動の構造をしており、スコア 時系列は固有ベクトルの構造の時間変動を表している。この対応関係から、スコ ア時系列の1988/89年の大きな正の値と2009/10年の大きな負の値はそれぞれ北 極振動プラス、マイナスの構造に対応しており、北極振動の定義である海面更正 気圧を基にした北極振動の変動と一致する。

## 5.3 順圧高度と外力、AOI方程式の項とのSVD解析

本節では、1950-2011年のNCEP/NCARのデータを用いて順圧高度と外力、AOI 方程式の線形項、非線形項のSVD解析の結果を示す。図8~図19中のモードの右 にある値は二乗共分散寄与率、VARFはそれぞれの場での全分散に対する各モードの分散の割合、rは二つの場のスコア時系列の相関係数をそれぞれ表している。 特異ベクトルの構造については、実線のコンターが正、破線のコンターが負の値 を示している。

5.3.1 日データを用いた解析

図8は日データでの順圧高度と外力のSVD-1を示している。第1モードの順圧 高度の特異ベクトル(左上)、外力の特異ベクトル(右上)、1988年1月のスコア時 系列(下)である。スコア時系列は実線が順圧高度、破線が外力を表しており、縦 軸のスコアは正規化した値である。日データを用いているため順圧高度、外力と もに傾圧不安定波のパターンが現れている。しかし、外力の位相が順圧高度の位 相に比べて東に90°ずれている。また、振幅は東太平洋から北米大陸で最大となっ ており、ユーラシア大陸上では波列は見られない。

図9は日データでの順圧高度と外力のSVD-2を示している。第2モードの順圧 高度の特異ベクトル(左上)、外力の特異ベクトル(右上)、1988年1月のスコア時 系列(下)である。スコア時系列の実線、破線、軸に関しては第1モードと同様で ある。第2モードも第1モードと同様に傾圧不安定波のパターンが現れており、位 相が90°ずれている。ただし、振幅については太平洋上で最大となっており、大西 洋上では波列があまり見られない。

図 10 は日データでの順圧高度と AOI 方程式の線形項の SVD-1 を示している。 第1モードの順圧高度の特異ベクトル (左上)、AOI 方程式の線形項の特異ベクト ル(右上)、1988年1月のスコア時系列(下)である。スコア時系列は実線が順圧高 度、破線が AOI 方程式の線形項を表しており、縦軸のスコアは正規化した値であ る。順圧高度と外力の SVD と同様に傾圧不安定波のパターンが現れている。AOI 方程式の線形項の位相は順圧高度の位相に比べて東に 90° ずれている。振幅は大 西洋上で最大となっており、ユーラシア大陸上では波列が見られない。スコアは 1-2 日ごとに正負が入れ替わっている。

図 11 は日データでの順圧高度と AOI 方程式の線形項の SVD-2 を示している。 第2モードの順圧高度の特異ベクトル (左上)、AOI 方程式の線形項の特異ベクト ル (右上)、1988年1月のスコア時系列(下)である。スコア時系列の実線、破線、 軸については第1モードと同様である。第1モードと同様傾圧不安定波のパター ンとなっており、位相が90° ずれている。振幅が最大となっているのは大西洋上で ある。スコアは第1モードと同様に1-2日ごとに正負が入れ替わっている。

図12は日データでの順圧高度とAOI方程式の非線形項のSVD-1を示している。 第1モードの順圧高度の特異ベクトル(左上)、AOI方程式の非線形項の特異ベクトル(右上)、1988年1月のスコア時系列(下)である。スコア時系列は実線が順圧 高度、破線がAOI方程式の非線形項を表しており、縦軸のスコアは正規化した値 である。順圧高度はAOのパターンが現れており、AOI方程式の非線形項はグリー ンランド付近で大きな正の値となっているが、それを除くとおおむね北極域で負、 中緯度地域で正の値となっている。ただしこの二つの場のスコア時系列の相関係 数は0.39と小さい。

図13は日データでの順圧高度とAOI方程式の非線形項のSVD-2を示している。 第2モードの順圧高度の特異ベクトル(左上)、AOI方程式の非線形項の特異ベクトル(右上)、1988年1月のスコア時系列(下)である。スコア時系列の実線、破線、 軸に関しては第1モードと同様である。順圧高度は波数4の構造をしている。AOI 方程式の非線形項は太平洋から北米大陸、大西洋にかけては順圧高度に対応する ような波列があるが、順圧高度ほど明瞭ではない。また、第1モード同様二つの 場のスコア時系列の相関係数は小さい。

#### 5.3.2 月平均データを用いた解析

図14は月平均データでの順圧高度と外力のSVD-1を示している。第1モードの 順圧高度の特異ベクトル(左上)、外力の特異ベクトル(右上)、スコア時系列(下) である。スコア時系列は12か月の移動平均をかけており、縦軸のスコアは正規化 した値である。実線が順圧高度、破線が外力を表している。月平均データでは傾 圧不安定波の構造は消え、順圧高度は北極域と中緯度地域で符号が反転して北極 振動の構造が現れている。また、外力の構造は、順圧高度の構造と正反対の符号 となっている。スコア時系列に関しては、順圧高度は北極振動の構造であるため、 北極振動と同じ変動を示している。

図15は月平均データでの順圧高度と外力のSVD-2を示している。第2モードの 順圧高度の特異ベクトル(左上)、外力の特異ベクトル(右上)、スコア時系列(下) である。スコア時系列の実線、破線、軸に関しては第1モードと同様である。順 圧高度は北太平洋、北米大陸南東部に負の値があり、中央太平洋、北米大陸北西 部に正の値のPNAパターンが見られる。また、シベリアに正、グリーンランド付 近に負の極が見られる。 図16は月平均データでの順圧高度とAOI方程式の線形項のSVD-1を示してい る。第1モードの順圧高度の特異ベクトル(左上)、AOI方程式の線形項の特異ベ クトル(右上)、スコア時系列(下)である。スコア時系列は12か月の移動平均をか けており、縦軸のスコアは正規化した値である。実線が順圧高度、破線がAOI方 程式の線形項を表している。順圧高度は北極振動の空間構造となっており、AOI 方程式の線形項は北極域からヨーロッパ、北米大陸西部にかけて負となっており、 それ以外の中緯度地域で正の値となり、順圧高度と似た構造をしている。

図 17 は月平均データでの順圧高度と AOI 方程式の線形項の SVD-2 を示してい る。第1モードの順圧高度の特異ベクトル(左上)、AOI 方程式の線形項の特異ベク トル(右上)、スコア時系列(下)である。スコア時系列の実線、破線、軸に関して は第1モードと同様である。順圧高度の空間構造は外力との SVD 解析の第2モー ドと同じパターンが現れている。

図 18 は月平均データでの順圧高度と AOI 方程式の非線形項の SVD-1 を示して いる。第1モードの順圧高度の特異ベクトル (左上)、AOI 方程式の非線形項の特 異ベクトル (右上)、スコア時系列 (下) である。スコア時系列は 12 か月の移動平 均をかけており、縦軸のスコアは正規化した値である。実線が順圧高度、破線が AOI 方程式の非線形項を表している。順圧高度は北極振動の空間構造となってお り、AOI 方程式の非線形項もグリーンランド付近の海上で大きな正の値となってい るが、北極域で負、中緯度地域で正となっている順圧高度に近い構造をしている。

図 19 は月平均データでの順圧高度と AOI 方程式の非線形項の SVD-2 を示して いる。第1モードの順圧高度の特異ベクトル (左上)、AOI 方程式の非線形項の特 異ベクトル (右上)、スコア時系列 (下) である。スコア時系列の実線、破線、軸に 関しては第1モードと同様である。順圧高度の空間構造は外力との SVD 解析の第 2モードと同じパターンが現れている。

## 5.4 線形定常応答

本節では、順圧高度に線形マトリックス、または外力にその逆行列を作用させ ることによって得られる定常応答について結果を示す。図20~図24の実線のコン ターは正、破線のコンターは負の値を示している。 5.4.1 線形マトリックスの構造の検証

本研究で用いた線形マトリックスには粘性項を含めていない。粘性項を含めて 計算すると、順圧高度の線形応答として求まる外力は、小さいスケールの粘性を 減衰させるように働くため、図20のような小さいスケールの構造が卓越する。本 研究ではよりスケールの大きい北極振動と外力の関係性に焦点を当てるため、粘 性項を含めずに計算した。

#### 5.4.2 線形定常応答と観測値の比較

図 21~図 24 は線形定常応答として求めたものと観測値を比較する図になっている。

図21は2009/10年DJFの観測値の順圧高度(左上)、外力の線形定常応答として 求めた順圧高度(右上)、観測値の外力(左下)、順圧高度の線形定常応答として求 めた外力(右下)の気候値からの偏差である。順圧行動の線形定常応答は観測値と 似た構造をしている。一方、外力の線形定常応答は北極域の正偏差と中緯度地域 の負偏差を表現しているが、負偏差のピークの位置が観測値と異なっており、加 えて全体的に大きな値を示している。北極振動プラス、マイナスの他の事例につ いて解析した図22の1975/76年DJF、図23の1976/77年DJF、図24の1988/89 年DJFに関しても、外力の観測値と線形定常応答は似た構造をしているが、順圧 高度の観測値と線形定常応答は大きく異なる構造をしている。

# 6 まとめと考察

## 6.1 高度場と外力、AOI 方程式の各項の関係

北極振動が大きく正負に振れた 1975/76年、1976/77年、1988/89年、2009/10 年 DJF の順圧高度と外力の空間構造を見ると、順圧高度の構造と外力の構造は正 反対の符号となっていた。式(72)より外力は順圧高度の時間微分の一つの項であ るため、外力が正の値となっているところでは高度を上昇させようと働き、外力 が負の値となっているところでは高度を低下させようと働いている。つまり、こ の4事例の場合では外力が高度場を減衰させていることが分かる。この関係性を4 事例だけでなく、統計的に解析した結果が SVD 解析の結果である。SVD 解析では 二つの場の共分散が最も大きいパターンが第1モードとして現れる。つまり、二つ の場で類似した変動パターンを持つ空間構造がペアで抽出されることになる。日 データを用いた SVD 解析では、順圧高度と外力は正反対の符号とはならずに、外 力の位相が順圧高度の位相に比べて 90° 東にずれていることから、外力が高度場 を東進させている関係性が強いことが分かる。月平均データでは順圧高度と外力 が正反対の符号となっており、外力が AO の構造をした高度場を減衰させている 関係性が最も大きいことが統計からも確認された。月平均データの結果は順圧大 気大循環モデルの各項と高度場の SVD 解析を行った Matsueda and Tanaka (2005) の結果と一致している。

また、順圧高度とAOI方程式の線形項、非線形項をSVD解析した結果について は、外力と同様に方程式系を考えると、日データではAOI方程式の線形項は高度 場を東進させるように働くことが分かる。日データでの順圧高度とAOI方程式の 非線形項はSVD-1、SVD-2のスコア時系列の相関係数が小さく、卓越した関係性 を見出すことはできない。月平均データではAOI方程式の線形項、非線形項とも に高度場に似た構造をしているため、AOに似た構造の高度場と共鳴関係にあるこ とが分かる。月平均データでのこの結果は木野(2012)を支持している。

## 6.2 線形マトリックスによる定常応答

線形マトリックスを用いて順圧高度、外力の定常応答を求め、観測値と比較した。順圧高度の線形定常応答としての外力は観測値と似た構造をしていた。この 結果より、AOの構造から外力を推定することができた。しかしながら、外力の線 形定常応答としての順圧高度は観測値と異なる構造となった。この原因として、観 測値の外力と線形定常応答で求めた外力は似た構造ではあるものの、非線形項や 時間変化項が含まれていない分の誤差が線形マトリックスの逆行列によって増幅 された可能性が考えられる。図25に示す通り、外力項は線形項と非線形項の和と バランスするように存在している。観測値の外力と線形定常応答で求めた外力の 微小な誤差を ε とすると、

$$f = -Aw + \epsilon$$

と表せる。 左から  $A^{-1}$  を掛けると、

$$\mathbf{A}^{-1}\mathbf{f} = -\mathbf{A}^{-1}\mathbf{A}\mathbf{w} + \mathbf{A}^{-1}\boldsymbol{\epsilon}$$

整理して、

$$\mathbf{w} = -\mathbf{A}^{-1}\mathbf{f} + \mathbf{A}^{-1}\boldsymbol{\epsilon}$$

となり、誤差が逆行列によって増幅されている。
### 7 結論

本研究では、北半球の気候に大きな影響を与える北極振動をもたらす外力に注 目して、SVD 解析により高度場と外力の関係性を統計的に抽出した。また、順圧 高度と外力の線形定常応答を求めた。

北極振動が顕著に現れた季節では順圧高度と外力の空間構造は正反対の分布を しており、外力は高度場を減衰させていることが分かった。SVD 解析を用いてこ の関係性を統計的に探ると、月平均のデータでは第1モードの高度場のパターン に北極振動の構造が現れ、外力はその構造を減衰させるように、AOI 方程式の線 形項、非線形項は共鳴するように働いていることが示された。また、日データで は外力、AOI 方程式の線形項は高度場を東進させるように働き、AOI 方程式の非 線形項については高度場と卓越した関係性は見られなかった。

順圧大気大循環モデルから作成した線形マトリックスを用いた定常応答では、観 測値の外力と、順圧高度の線形定常応答として求めた外力が似た構造をしていた が、外力の線形定常応答として求めた順圧高度は観測値とは異なる構造をしてい た。この結果より、AOの構造から外力を推定することはできたが、外力から AO の構造を求めるときには、近似の過程で生じた観測値と計算結果の誤差が逆行列 で増幅していることが明らかとなった。

### 8 謝辞

本研究を進めるにあたり、指導教員である筑波大学計算科学研究センターの田 中博教授には、本研究の動機となる論文の紹介、解析手法の提案、私の些細な質 問や結果に対する考察などへの丁寧な御指導、御助言を賜り、心より感謝してお ります。

本研究を進めるにあたり、同大学生命環境科学研究科の植田宏昭教授、上野健 ー准教授、日下博幸准教授、若月泰孝助教や大学院生の皆様には、方針発表、中 間発表、最終発表、ポスター発表の場で貴重な御助言を多く頂き有難うございま した。

最後に、国立極地研究所、同大学計算科学研究センター寺崎康児共同研究員を はじめとして大気大循環研究室の先輩方には大変お世話になりました。また、共 に机を並べ卒論作業を進めてきた地球学類の4年生の皆様には、良き相談相手と なって頂きました。

本論文は以上の皆様の御協力により完成させることができました。心より感謝 いたします。

尚、本研究で用いた主な図は、The Generic Mapping Tools System (Wessel and Smith 1991) にて作成いたしました。

### 参考文献

- Itoh, H., 2002: True versus apparent arctic oscillation. *Geophys. Res. Lett.*, **29**, 8,doi:10.1029/2001GL013978.
- Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell,
  S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Ropelewski, J. Wang,
  R. Jenne, and D. Joseph., 1996 : The NCEP/NCAR 40-Year Reanalysis
  Project. Bull. Amer. Meteor. Soc., 77, 437-472.
- Kimoto, M., F-F. Jin, M. Watanabe, and N.Yasutomi, 2001: Zonal-eddy coupling and a neutral mode theory for the Arctic Oscillation. *Geophys. Res. Lett.*, 28, 737-740.
- Matsueda, M., and H. L. Tanaka, 2005: EOF and SVD analyses of the low-frequency variability of the barotropic component of the atmosphere. J. Meteor. Soc. Japan, 83, 517-529.
- Tanaka, H. L., 1985: Global energtics analysis by expansion into three-dimensional normal mode function during the FGGE winter J. Meteor. Soc. Jpn., 63, 180-200.
- Tanaka, H. L., 1991: A numerical simulation of amplication of low-frequency planetary waves and blocking formations by the upscale energy cascade. Mon. Wea. Rev., 119, 2919-2935.
- Tanaka, H. L., 2003: Analysis and modeling of the Arctic Oscillation using a simple barotropic model with baroclinic eddy forcing. J. Atmos. Sci., 28, 737-740.
- Tanaka, H. L., and M. Matsueda, 2005: Arctic Oscillation analyzed as a singular eigenmode of the global atmosphere. J. Meteor. Soc. Japan, 83, 611-619.
- Thompson, D. W. and J. M. Wallace, 1998: Arctic Oscillaton signature in the wintertime geopotential heght and temperature field. *Geophys. Res. Lett.*, 25, 1297-1300.

- Watanabe, M. and F. F. Jin, 2004: Dynamical prototype of the Arctic Oscillation as revealed by a neutral singular vector. J. Climate, 17, 2119-2138.
- 小倉義光, 1978: 気象力学通論. 東京大学出版会. 249pp
- 気象庁, 2010: 北半球中緯度帯に顕著な寒波をもたらした大気の流れについて, 平成 21年度異常気象分析検討会資料.
- 木野公朝, 2012: AOI 方程式を用いた 10 年スケールの北極振動の成因解明. 筑波大 学地球学類卒業論文, 97pp.
- 下悠子, 2011: 北極振動方程式を用いた北極振動の解析的研究 筑波大学生命環境科 学研究科修士論文, 51pp
- 関佐和香,2012: 大気大循環の線形傾圧モデルの開発と3次元線形不安定解析への 応用. 筑波大学大学院生命環境科学研究科修士論文,90pp.
- 田中博, 2003: 力学的長期予報の展望: 長周期変動の力学と予測可能性の探求. グ ロースベッター、気象庁, 41, 51-88.
- 田中博,2004: 順圧大気大循環モデルによる北極振動の数値実験およびその力学的 考察. 気象研究ノート,206,71-107.
- 田中博, 早崎正光, 安成哲三, 1997: 1993/94年夏の日本付近における異常気象の熱 収支解析. 気象研究ノート, 189, 97-125.

### Appendix

#### **EOF**解析

大気科学の中でよく使われる解析手法である EOF 解析について解説する。

EOF 解析とは

AO は北半球における海面更正気圧を EOF 解析 (主成分解析) したものの第一 主成分により定義される。

EOF解析は、いくつかの地点における時系列データの主要な変動パターンを抽 出して変動の特徴を把握するための統計的手法であり、北半球における大気の変 動パターンを見るためにこれを行う。

ー般に何らかの相関関係がある p 個の地点でのデータ  $x_1, x_2, \dots, x_p (p \ge 2)$  で、 時系列方向に N 個のデータ  $x_{1\lambda}, x_{2\lambda}, \dots, x_{p\lambda}$  ( $\lambda = 1, 2, \dots, N$ ) が得られたとする。 これらの N 個の時系列データは、それぞれ p 個の地点での気象要素が相互に関連 のある変動を示しているとみなせるので、この変動を説明する関数として、p 個の 変量の一次結合で表すことができ、これを

$$z = l_1 x_1 + l_2 x_2 + \dots + l_p x_p \tag{95}$$

と仮定し、 $l_1, l_2, \cdots, l_p$ を変化させ、

$$\sum_{i=1}^{p} l_i^2 = 1 \tag{96}$$

の条件の下で、zの分散が最大になるときのzを第一主成分という。このときの係数を $l_{1i}(i = 1, 2, \dots, p)$ で表すと、

$$z_1 = l_{11}x_1 + l_{12}x_2 + \dots + l_{1p}x_p \tag{97}$$

となる。

次に $z_1$ とは無相関なzのうちで、式(97)を満たす最大の分散を持つ $z_2$ が決定できる。この $z_2$ を第二主成分という。この時の係数を $l_{2i}(i = 1, 2, \dots, p)$ とすると $z_2$ は、

$$z_2 = l_{21}x_1 + l_{22}x_2 + \dots + l_{2p}x_p \tag{98}$$

と表すことができる。以下同様にして第m成分 $z_m$ までで全変動の大部分が説明できればこれ以上を求める必要はない。ここで、 $z_m$ を、

$$z_m = l_{m1}x_1 + l_{m2}x_2 + \dots + l_{mp}x_p \tag{99}$$

と書く。従って各係数は、

$$l_{\alpha 1}^{2} + l_{\alpha 2}^{2} + \dots + l_{\alpha p}^{2} = \sum_{k=1}^{p} l_{\alpha k}^{2} = 1$$
(100)

を満たし、各主成分は下の条件を満たすように定まる.

各主成分の計算は、 $p \times p$ の分散共分散行列の固有値問題に帰着する。これについては次小節に記すこととする。

全球再解析データに対して EOF 解析をする際には注意が必要である。なぜな ら、全球再解析データはどの緯度帯でも経度方向には同じ数のグリッドが存在す るからである。地球は球形であるので、全球再解析データのままでは高緯度にな るほど各グリッドあたりの面積が小さくなる。そのため、面積荷重を考慮せずに EOF 解析を行ってしまうと低緯度と比較して高緯度の変動が相対的に大きく見積 もられてしまい、実際に変動を特徴付けるパターンとは異なるパターンが現れる 恐れがある。このグリッドの偏りを修正するために、緯度方向に面積荷重  $\sqrt{\cos\theta}$ をデータにかけて偏りを解消する。 EOF 解析における固有ベクトルの計算方法

一般に、p変量データ、すなわちN個の各標本について、p種類の変量 $x_1, x_2, \cdots, x_p$ が測定されたとし、そのデータに基づき、主成分 $z_1, z_2, \cdots, z_m (m \le p)$ を求める方法について以下で述べる。

まず、得られたデータより各変量の分散共分散 *σ<sub>ij</sub>* を求め、それを

$$\mathbf{S} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{pmatrix}$$
(101)

と表す。ここでの $\sigma_{ij}$ は各変量の分散共分散の不偏推定値であり、

$$\sigma_{ij} = \frac{1}{N-1} \left\{ \sum_{\lambda=1}^{n} (x_{i\lambda} - \bar{x}_i)(x_{j\lambda} - \bar{x}_j) \right\}$$
(102)

$$\bar{x}_i = \frac{1}{N} \sum_{\lambda=1}^N x_{i\lambda} \tag{103}$$

とし、さらに相関行列を求め、それを

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \end{pmatrix}$$
(104)

$$(r_{ii} = 1; i = 1, 2, \cdots, p)$$

と表す。

ここで、p 個の変量  $x_1, x_2, \cdots, x_p$  からなるベクトル変量を

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$
(105)

とする。ここで、Xのとりうる量は、

| (                | $x_{11}$ |   | $\left(\begin{array}{c} x_{12} \end{array}\right)$   |     | $\left( \begin{array}{c} x_{1N} \end{array} \right)$ |
|------------------|----------|---|------------------------------------------------------|-----|------------------------------------------------------|
|                  | $x_{21}$ | , | $x_{22}$                                             | ,…, | $x_{2N}$                                             |
|                  | ÷        |   | ÷                                                    |     | :                                                    |
| $\left( \right)$ | $x_{p1}$ |   | $\left( \begin{array}{c} x_{p2} \end{array} \right)$ |     | $\left( x_{pN} \right)$                              |

である。また、各主成分を式 (95) の形で求めるために各主成分の変量  $x_i$  の係数を それぞれベクトル

$$\mathbf{l}_{1} = \begin{pmatrix} l_{11} \\ l_{21} \\ \vdots \\ l_{p1} \end{pmatrix}, \mathbf{l}_{2} = \begin{pmatrix} l_{12} \\ l_{22} \\ \vdots \\ l_{p2} \end{pmatrix}, \cdots, \mathbf{l}_{m} = \begin{pmatrix} l_{1m} \\ l_{2m} \\ \vdots \\ l_{pm} \end{pmatrix}$$

で表し、 $l_{lpha}$ の転置行列を $l_{lpha}^T$ で表すと主成分は

$$\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \mathbf{l}_1^T \\ \mathbf{l}_2^T \\ \vdots \\ \mathbf{l}_m^T \end{pmatrix} \mathbf{X}$$
(106)

と書くことができる。ただし、各 $\mathbf{l}_{\alpha}^{T}$ は単位ベクトル $(\mathbf{l}_{\alpha}^{T} \cdot \mathbf{l}_{\alpha} = 1)$ とする。

これより、各成分  $z_{\alpha}$  が条件 (100) を満たすように係数を求めればよい。した がって、

$$V\{z_1\} = v\{\mathbf{l}_1^T\mathbf{X}\} = \mathbf{l}_1^T V\{\mathbf{X}\}\mathbf{l}_1 = \mathbf{l}_1^T \mathbf{S}\mathbf{l}_1$$
(107)

 $z_1$ の分散  $V\{z_1\}$  が最大になるような  $l_1$  を求めるために、ラグランジュの未定乗数 法を用いる (次小節参照)。ここで、ラグランジュ未定乗数を  $\lambda$  として、

$$v = \mathbf{l}_1^T \mathbf{S} \mathbf{l}_1 - \lambda (\mathbf{l}_1^T \mathbf{l}_1 - 1)$$
(108)

の両辺を $l_1^T$ で微分すると、微分方程式

$$\frac{\partial v}{\partial \mathbf{l}_1^T} = (\mathbf{S} - \lambda \mathbf{I})\mathbf{l}_1 \tag{109}$$

**I**:*p* 次の単位行列

が得られ、ラグランジュの未定乗数法よりこの微分方程式が0になるときに $z_1$ の分散  $V\{z_1\}$  は最大になる。すなわち、以下の連立方程式

$$(\mathbf{S} - \lambda \mathbf{I})\mathbf{l}_1 = 0 \tag{110}$$

を解けばよい。ここで、式 (106) のベクトル  $l_1$  の要素がすべて 0 以外の解を持つためには  $\lambda$  が固有方程式

$$|\mathbf{S} - \lambda \mathbf{I}| = 0 \tag{111}$$

の解 (固有値) でなければならない。また、 $z_1$ の分散  $V\{z_1\}$  を最大にするものが存 在するとすれば、式 (109) より

$$V\{z_1\} = \lambda \tag{112}$$

であり、式 (111) の固有値に等しくなるので、 $z_1$  における係数ベクトル  $l_1$  として は、式 (111) の最大の固有値  $\lambda_1$  に対応する単位固有ベクトルとして第一主成分  $z_1$ を決定することができる。一方、式 (111) の固有値を展開すると $\lambda$  についての p次 方程式になるので、p 個の固有値 (重複するものを含めて数えると) が存在し、し かも S は非負の対称行列であるから固有値はすべて非負の実数である。その中の 最大のものを  $\lambda_1$  として  $l_1$  を求める。さらに大きさの順に  $\lambda_2, \lambda_3, \dots, \lambda_m$  を抽出し、  $\lambda_k(1 \le k \le m)$  に対応する単位固有ベクトルを第 k 主成分  $z_k$  における係数ベクト ル  $l_k$  として、全部で m 個の主成分を求めるとこれらは条件を満たす。

#### ラグランジュの未定乗数法

関数  $y = f(x_1, x_2, \dots, x_p)$  について、条件  $h(x_1, x_2, \dots, x_p) = 0$  のもとで、その 極大、もしくは極小を求めるために以下の関数を導入する。

$$z = f(x_1, x_2, \cdots, x_p) + \lambda h(x_1, x_2, \cdots, x_p)$$
(113)

この仮定した関数において、zを最大にすることは、yをh = 0のもとで極大、もしくは極小にすることと同値である。したがって、

$$\frac{\partial z}{\partial x_1} = \frac{\partial z}{\partial x_2} = \dots = \frac{\partial z}{\partial x_p} = h(x_1, x_2, \dots, x_p) = 0$$
(114)

を解いて、 $x_1, x_2, \cdots, x_p$ を求めると、この $x_1, x_2, \cdots, x_p$ に対するyの値が極大、 もしくは極小となる。さらに条件が次のように二個以上あるときにおいても、

$$h_1(x_1, x_2, \cdots, x_p) = 0, \ h_2(x_1, x_2, \cdots, x_p) = 0, \ \cdots, \ h_p(x_1, x_2, \cdots, x_p) = 0$$
 (115)

上記の場合と同じように、次の関数について、

$$z = (x_1, x_2, \cdots, x_p) + \lambda_1 h_1(x_1, x_2, \cdots, x_p) + \lambda_2 h_2(x_1, x_2, \cdots, x_p) + \cdots + \lambda_p h_p(x_1, x_2, \cdots, x_p) \quad (116)$$

上記の場合と同じように式 (114) を解くことにより y を極大、もしくは極小にする ことができる。

#### SVD 解析

#### SVD 解析とは

SVD(特異値分解)解析とは、いくつかの地点における時系列データについて、異 なる二つの物理量の場の関係性が強いパターンを抽出する解析手法である。EOF 解析では一つの物理量のデータから分散共分散行列を求め、固有値問題に帰着さ せて固有ベクトルを求めた。一方、SVD解析では、二つの場を用いるため共分散 行列は一般的に長方行列となる。そこで特異値分解により、二つの場の特異ベク トルを得る。第1モードは二つの場の共分散の二乗が最も大きいモードであり、先 に述べた通り、二つの場の変動の関連性が強いパターンが現れることになる。数 学的構造はEOF解析と同様であり、SVD解析において二つの物理量に同一のデー タを与えるとEOF解析に帰着させることができる。以下詳細を述べる。

任意の行列Cについて特異値分解をすることができ、

$$\mathbf{C} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{T}} \tag{117}$$

と表せる。ここで U, V は正規直交行列であり、 $\Sigma$  は特異値を成分とする対角行列である。このとき行列 C とその転置行列の積は、

$$\begin{cases} \mathbf{C}\mathbf{C}^{T} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\mathbf{T}}\mathbf{U}^{\mathbf{T}} \\ \mathbf{C}^{T}\mathbf{C} = \mathbf{V}\boldsymbol{\Sigma}^{\mathbf{T}}\boldsymbol{\Sigma}\mathbf{V}^{\mathbf{T}} \end{cases}$$
(118)

となる。

ある物理量について p 個の地点でのデータ  $x_1, x_2, \dots, x_p$  ( $p \ge 2$ )、と別の物理量 について q 個の地点でのデータ  $y_1, y_2, \dots, y_q$  ( $q \ge 2$ ) があり、それぞれ時系列方向 に N 個のデータ  $x_{1\lambda}, x_{2\lambda}, \dots, x_{p\lambda} y_{1\lambda}, y_{2\lambda}, \dots, y_{q\lambda}$  ( $\lambda = 1, 2, \dots, N$ ) が得られたと する。EOF 解析と同様に地点数の変量の一次結合で変動を表すと、

$$z_x = l_1 x_1 + l_2 x_2 + \dots + l_p x_p \tag{119}$$

$$z_y = k_1 y_1 + k_2 y_2 + \dots + k_q y_q \tag{120}$$

となる。 $l_1, l_2, \cdots, l_p, k_1, k_2, \cdots, k_q$ を変化させ、

$$\sum_{i=1}^{p} l_i^2 = 1 \tag{121}$$

$$\sum_{j=1}^{q} k_i^2 = 1 \tag{122}$$

の条件の下で、 $z_x$  と $z_y$ の共分散が最大になるときの係数 $l_1, l_2, \cdots, l_p, k_1, k_2, \cdots, k_q$ を求める。

SVD 解析における特異ベクトルの計算方法

得られた二つの場のデータの共分散行列 $\sigma_{ij}$ を求め、それを

$$\mathbf{C} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1q} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pq} \end{pmatrix}$$
(123)

と表す。ここでの $\sigma_{ij}$ は二つの場の不偏共分散であり、

$$\sigma_{ij} = \frac{1}{N-1} \left\{ \sum_{\lambda=1}^{n} (x_{i\lambda} - \bar{x}_i)(y_{j\lambda} - \bar{y}_j) \right\}$$
(124)

$$\bar{x}_i = \frac{1}{N} \sum_{\lambda=1}^N x_{i\lambda}, \ \bar{y}_j = \frac{1}{N} \sum_{\lambda=1}^N y_{j\lambda}$$
(125)

である。

ここで、p 個の変量  $x_1, x_2, \cdots, x_p$  からなるベクトル変量を

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$
(126)

q 個の変量  $y_1, y_2, \cdots, y_q$  からなるベクトル変量を

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_q \end{pmatrix}$$
(127)

とする。ここで、X のとりうる量は、

$$\begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{p1} \end{pmatrix}, \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{p2} \end{pmatrix}, \cdots, \begin{pmatrix} x_{1N} \\ x_{2N} \\ \vdots \\ x_{pN} \end{pmatrix}$$

Yのとりうる量は、

$$\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{q1} \end{pmatrix}, \begin{pmatrix} y_{12} \\ y_{22} \\ \vdots \\ y_{q2} \end{pmatrix}, \cdots, \begin{pmatrix} y_{1N} \\ y_{1N} \\ \vdots \\ y_{qN} \end{pmatrix}$$

である。また、 $z_x$  と $z_y$ を式 (119)、(120) の形で求めるために変量  $x_i$ ,  $y_i$  の係数を それぞれベクトル

$$\mathbf{l}_{1} = \begin{pmatrix} l_{11} \\ l_{21} \\ \vdots \\ l_{p1} \end{pmatrix}, \mathbf{l}_{2} = \begin{pmatrix} l_{12} \\ l_{22} \\ \vdots \\ l_{p2} \end{pmatrix}, \cdots, \mathbf{l}_{m} = \begin{pmatrix} l_{1m} \\ l_{2m} \\ \vdots \\ l_{pm} \end{pmatrix}$$
$$\mathbf{k}_{1} = \begin{pmatrix} k_{11} \\ k_{21} \\ \vdots \\ k_{q1} \end{pmatrix}, \mathbf{k}_{2} = \begin{pmatrix} k_{12} \\ k_{22} \\ \vdots \\ k_{q2} \end{pmatrix}, \cdots, \mathbf{k}_{m} = \begin{pmatrix} k_{1m} \\ k_{2m} \\ \vdots \\ k_{qm} \end{pmatrix}$$

で表し、 $l_{\alpha}$ の転置行列を $l_{\alpha}^{T}$ 、 $k_{\alpha}$ の転置行列を $k_{\alpha}^{T}$ で表すと

$$\begin{pmatrix} z_{x1} \\ z_{x2} \\ \vdots \\ z_{xm} \end{pmatrix} = \begin{pmatrix} \mathbf{l}_{1}^{T} \\ \mathbf{l}_{2}^{T} \\ \vdots \\ \mathbf{l}_{m}^{T} \end{pmatrix} \mathbf{X}$$
(128)
$$\begin{pmatrix} z_{y1} \\ z_{y2} \\ \vdots \\ z_{ym} \end{pmatrix} = \begin{pmatrix} \mathbf{k}_{1}^{T} \\ \mathbf{k}_{2}^{T} \\ \vdots \\ \mathbf{k}_{m}^{T} \end{pmatrix} \mathbf{Y}$$
(129)

と書くことができる。ただし、各  $\mathbf{l}_{\alpha}^{T}$ ,  $\mathbf{k}_{\alpha}^{T}$ は単位ベクトル ( $\mathbf{l}_{\alpha}^{T} \cdot \mathbf{l}_{\alpha} = 1$ ,  $\mathbf{k}_{\alpha}^{T} \cdot \mathbf{k}_{\alpha} = 1$ ) と する。これより、 $z_{x}$  と $z_{y}$  が条件 (121)、(122) を満たすように係数を求めればよい。  $Cov(z_{x}, z_{y}) = \mathbf{l}_{1}^{T} \mathbf{Ck}_{1}$  (130)

であるから、EOF 解析と同様にラグランジュの未定乗数法を用いて  $z_x$  と  $z_y$  の共 分散が最大となるような l, k を求める。ラグランジュ未定乗数を  $\lambda_1, \lambda_2$  として、

$$v = \mathbf{l}_1^T \mathbf{C} \mathbf{k}_1 - \lambda_1 (\mathbf{l}_1^T \mathbf{l}_1 - 1) - \lambda_2 (\mathbf{k}_1^T \mathbf{k}_1 - 1)$$
(131)

の両辺を l<sub>1</sub>, k<sub>1</sub> で微分すると、微分方程式

$$\frac{\partial v}{\partial \mathbf{l}_1} = \mathbf{k}_1^T \mathbf{C}^T - 2\lambda_1 \mathbf{l}_1^T \tag{132}$$

$$\frac{\partial v}{\partial \mathbf{k}_1} = \mathbf{l}_1^T \mathbf{C} - 2\lambda_2 \mathbf{k}_1^T \tag{133}$$

が得られ、ラグランジュの未定乗数法よりこの微分方程式が0になるときに $z_x$ と $z_y$ の共分散が最大になる。すなわち、以下の連立方程式

$$\begin{cases} \mathbf{k}_1^T \mathbf{C}^T = 2\lambda_1 \mathbf{l}_1^T \\ \mathbf{l}_1^T \mathbf{C} = 2\lambda_2 \mathbf{k}_1^T \end{cases}$$
(134)

を解けばよい。この2式より $\lambda_1 = \lambda_2$ であり、 $\lambda = 2\lambda_1$ とおくと、

$$Cov(z_x, z_y) = \mathbf{l}_1^T \mathbf{C} \mathbf{k}_1 = \lambda$$
(135)

と表せる。ここで、式(134)のそれぞれにおいて転置行列との積を考える。つまり、

$$\begin{cases} \mathbf{k}_{1}^{T} \mathbf{C}^{T} = \lambda \mathbf{l}_{1}^{T} \\ \mathbf{l}_{1}^{T} \mathbf{C} = \lambda \mathbf{k}_{1} \end{cases}$$
(136)

の両辺にその転置

$$\begin{cases} \mathbf{C}\mathbf{k}_1 = \lambda \mathbf{l}_1 \\ \mathbf{C}^T \mathbf{l}_1 = \lambda \mathbf{k}_1^T \end{cases}$$
(137)

を右から掛ける。すると、

$$\begin{cases} \mathbf{l}_{1}^{T} \mathbf{C} \mathbf{C}^{T} \mathbf{l}_{1} = \lambda^{2} \\ \mathbf{k}_{1}^{T} \mathbf{C}^{T} \mathbf{C} \mathbf{k}_{1} = \lambda^{2} \end{cases}$$
(138)

となる。次に、左から $l_1$ ,  $k_1$ をそれぞれ掛ける。

$$\begin{cases} \left(\mathbf{l}_{1}\mathbf{l}_{1}^{T}\right)\mathbf{C}\mathbf{C}^{T}\mathbf{l}_{1} = \lambda^{2}\mathbf{l}_{1} \\ \left(\mathbf{k}_{1}\mathbf{k}_{1}^{T}\right)\mathbf{C}^{T}\mathbf{C}\mathbf{k}_{1} = \lambda^{2}\mathbf{k}_{1} \end{cases}$$
(139)

いま、行列  $\mathbf{C}\mathbf{C}^T$  によるベクトル  $\mathbf{l}_1$  の一次変換を考えて、

$$\mathbf{C}\mathbf{C}^T\mathbf{l}_1 = a\mathbf{l}_1 + \mathbf{b} \tag{140}$$

とする。左から  $\mathbf{l}_1 \mathbf{l}_1^T$ を掛けて、

$$(\mathbf{l}_1 \mathbf{l}_1^T) \mathbf{C} \mathbf{C}^T \mathbf{l}_1 = a (\mathbf{l}_1 \mathbf{l}_1^T) \mathbf{l}_1 + (\mathbf{l}_1 \mathbf{l}_1^T) \mathbf{b}$$
  
=  $a \mathbf{l}_1 + (\mathbf{l}_1 \mathbf{l}_1^T) \mathbf{b}$  (141)

となるが、式 (139) より  $a = \lambda^2$ ,  $\mathbf{b} = \mathbf{0}$  と求まる。すなわち、

$$\mathbf{C}\mathbf{C}^T\mathbf{l}_1 = \lambda^2 \mathbf{l}_1 \tag{142}$$

である。また、k1 についても同様にして

$$\mathbf{C}^T \mathbf{C} \mathbf{k}_1 = \lambda^2 \mathbf{k}_1 \tag{143}$$

となる。ここで式 (118) より、共分散を最大にする、つまり  $\lambda^2$  を最大にする  $\mathbf{l}_1$ ,  $\mathbf{k}_1$  は、行列 C の最大特異値に対する左右の特異ベクトルに他ならない。



図 1: 2009/10 年冬季 (DJF) の北半球の海面更正気圧 (気象庁提供)。 北極域で正 偏差、中緯度地域で負偏差。



図 2: 定常応答計算に用いた線形マトリックスの構造。

## DJF 1975/76



図 3: 1975/76 年冬季 (DJF) の順圧高度 (上) と外力 (下)。

## DJF 1976/77



図 4: 1976/77 年冬季 (DJF) の順圧高度 (上) と外力 (下)。

## DJF 1988/89



図 5: 1988/89 年冬季 (DJF) の順圧高度 (上) と外力 (下)。

## DJF 2009/10



図 6: 2009/10 年冬季 (DJF) の順圧高度 (上) と外力 (下)。



図 7: NCEP/NCAR のデータを用いた 1950-2011 年の順圧高度の EOF-1。固有ベ クトル(上)とスコア時系列(下)。スコア時系列は 365 日の移動平均をかけており、 正規化している。



図 8: 1950-2011年の日データでの順圧高度と外力の SVD-1。高度の特異ベクトル (左上)、外力の特異ベクトル(右上)、1988年1月のスコア時系列(下)。スコア時 系列は正規化しており、実線が高度、破線が外力を表す。



図 9: 1950-2011年の日データでの順圧高度と外力の SVD-2。高度の特異ベクトル (左上)、外力の特異ベクトル(右上)、1988年1月のスコア時系列(下)。スコア時 系列は正規化しており、実線が高度、破線が外力を表す。



図 10: 1950-2011年の日データでの順圧高度とAOI方程式の線形項のSVD-1。高度の特異ベクトル(左上)、線形項の特異ベクトル(右上)、1988年1月のスコア時系列(下)。スコア時系列は正規化しており、実線が高度、破線が線形項を表す。



図 11: 1950-2011年の日データでの順圧高度とAOI方程式の線形項のSVD-2。高度の特異ベクトル(左上)、線形項の特異ベクトル(右上)、1988年1月のスコア時系列(下)。スコア時系列は正規化しており、実線が高度、破線が線形項を表す。



図 12: 1950-2011年の日データでの順圧高度とAOI方程式の非線形項のSVD-1。 高度の特異ベクトル(左上)、非線形項の特異ベクトル(右上)、1988年1月のスコ ア時系列(下)。スコア時系列は正規化しており、実線が高度、破線が非線形項を 表す。



図 13: 1950-2011年の日データでの順圧高度とAOI方程式の非線形項のSVD-2。 高度の特異ベクトル(左上)、非線形項の特異ベクトル(右上)、1988年1月のスコ ア時系列(下)。スコア時系列は正規化しており、実線が高度、破線が非線形項を 表す。



図 14: 1950-2011 年の月データでの順圧高度と外力の SVD-1。高度の特異ベクト ル(左上)、外力の特異ベクトル(右上)、スコア時系列(下)。スコア時系列は12か 月の移動平均をかけ、正規化しており、実線が高度、破線が外力を表す。



図 15: 1950-2011 年の月データでの順圧高度と外力の SVD-2。高度の特異ベクト ル(左上)、外力の特異ベクトル(右上)、スコア時系列(下)。スコア時系列は12か 月の移動平均をかけ、正規化しており、実線が高度、破線が外力を表す。



図 16: 1950-2011 年の月データでの順圧高度と AOI 方程式の線形項の SVD-1。高 度の特異ベクトル (左上)、線形項の特異ベクトル (右上)、スコア時系列 (下)。ス コア時系列は 12 か月の移動平均をかけ、正規化しており、実線が高度、破線が線 形項を表す。



図 17: 1950-2011 年の月データでの順圧高度と AOI 方程式の線形項の SVD-2。高 度の特異ベクトル (左上)、線形項の特異ベクトル (右上)、スコア時系列 (下)。ス コア時系列は 12 か月の移動平均をかけ、正規化しており、実線が高度、破線が線 形項を表す。



図 18: 1950-2011 年の月データでの順圧高度と AOI 方程式の非線形項の SVD-1。 高度の特異ベクトル (左上)、非線形項の特異ベクトル (右上)、スコア時系列 (下)。 スコア時系列は 12 か月の移動平均をかけ、正規化しており、実線が高度、破線が 非線形項を表す。



図 19: 1950-2011 年の月データでの順圧高度と AOI 方程式の非線形項の SVD-2。 高度の特異ベクトル (左上)、非線形項の特異ベクトル (右上)、スコア時系列 (下)。 スコア時系列は 12 か月の移動平均をかけ、正規化しており、実線が高度、破線が 非線形項を表す。

# **Barotropic Forcing**



図 20: 線形マトリックスに粘性項を含めて計算した順圧高度の定常応答としての 外力。


図 21: 2009/10 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答。観測値 の順圧高度 (左上)、外力の線形定常応答として求めた順圧高度 (右上)、観測値の 外力 (左下)、順圧高度の線形定常応答として求めた外力 (右下)の気候値からの偏 差。右上のコンター間隔は左上のコンター間隔の3倍で描画している。



図 22: 1975/76 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答。観測値 の順圧高度 (左上)、外力の線形定常応答として求めた順圧高度 (右上)、観測値の 外力 (左下)、順圧高度の線形定常応答として求めた外力 (右下) 気候値からの偏差。 右上のコンター間隔は左上のコンター間隔の 10 倍で描画している。



図 23: 1976/77 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答。観測値 の順圧高度 (左上)、外力の線形定常応答として求めた順圧高度 (右上)、観測値の 外力 (左下)、順圧高度の線形定常応答として求めた外力 (右下) 気候値からの偏差。 右上のコンター間隔は左上のコンター間隔の 10 倍で描画している。



図 24: 1988/89 年冬季 (DJF) の順圧高度と外力の観測値と線形定常応答。観測値 の順圧高度 (左上)、外力の線形定常応答として求めた順圧高度 (右上)、観測値の 外力 (左下)、順圧高度の線形定常応答として求めた外力 (右下) 気候値からの偏差。 右上のコンター間隔は左上のコンター間隔の 10 倍で描画している。



図 25: 順圧大気大循環モデルにおける線形項、非線形項、外力項の比較。2009/10 年冬季 (DJF)の線形項 (左上)、非線形項 (右上)、線形項と非線形項の和 (左下)、 外力項 (右下)。